Infrared and Visible Image Fusion with Nuclear Norm Activity Level Measurement

Shihabudeen H, Rajeesh J
{"title":"Infrared and Visible Image Fusion with Nuclear Norm Activity Level Measurement","authors":"Shihabudeen H, Rajeesh J","doi":"10.1109/ICEEICT56924.2023.10157238","DOIUrl":null,"url":null,"abstract":"Image fusion produces a single image from numerous images with complementary information. Infrared images collect information on the thermal distribution of the scene, whereas visible images collect textural information. The fusion of these images creates images with thermal and textural details suitable for night-vision cameras and surveillance applications. The proposed auto encoder network with selected residual paths extracts the salient features from the images and then combines them using the nuclear norm's optimization effectiveness. The combined images are created with 5 CNN layers with a 3 x 3 filter size, and the fused output retains more information from both inputs. The suggested algorithm generates images with improved objective evaluation metrics with values of 6.89971 for entropy, 0.76133 for structural similarity, 3.83682 for mutual information, and 0.91325 for feature mutual information. The model outper- forms similar models for the fusion, and the algorithm is suitable for other fusion problems.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image fusion produces a single image from numerous images with complementary information. Infrared images collect information on the thermal distribution of the scene, whereas visible images collect textural information. The fusion of these images creates images with thermal and textural details suitable for night-vision cameras and surveillance applications. The proposed auto encoder network with selected residual paths extracts the salient features from the images and then combines them using the nuclear norm's optimization effectiveness. The combined images are created with 5 CNN layers with a 3 x 3 filter size, and the fused output retains more information from both inputs. The suggested algorithm generates images with improved objective evaluation metrics with values of 6.89971 for entropy, 0.76133 for structural similarity, 3.83682 for mutual information, and 0.91325 for feature mutual information. The model outper- forms similar models for the fusion, and the algorithm is suitable for other fusion problems.
红外和可见光图像融合与核模活动水平测量
图像融合从具有互补信息的众多图像中生成单个图像。红外图像收集的是场景的热分布信息,而可见光图像收集的是纹理信息。这些图像的融合创建了适合夜视摄像机和监控应用的热和纹理细节图像。所提出的残差路径自编码器网络从图像中提取显著特征,然后利用核范数的优化效果进行组合。合并后的图像由5个具有3 × 3滤波器大小的CNN层创建,融合后的输出保留了来自两个输入的更多信息。该算法生成的图像具有改进的客观评价指标,熵值为6.89971,结构相似度为0.76133,互信息为3.83682,特征互信息为0.91325。该模型优于同类的融合模型,适用于其他的融合问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信