Genetic algorithm based clustering for gene-gene interaction in episodic memory

Sudhakar Tripathi, R. Mishra, A. Sharma
{"title":"Genetic algorithm based clustering for gene-gene interaction in episodic memory","authors":"Sudhakar Tripathi, R. Mishra, A. Sharma","doi":"10.1504/IJBRA.2019.101208","DOIUrl":null,"url":null,"abstract":"After the identification of several disease-associated polymorphisms by genome-wide association analysis, it is now clear that gene-gene interactions are fundamental mechanisms for the development of complex diseases. In this paper, we propose a genetic algorithm (GA) based clustering algorithm to identify groups of related genes in episodic memory. This clustering method required number of clusters and number of genes in each cluster and fitness function. In this paper, we have taken STRING 9.1 clustering method result on episodic memory. We have used “interaction between clusters” as a fitness function for the GA and have compared the result of GA based clustering algorithm with standard K-means, STRING 9.1 K-means, hierarchical and self-organising maps. We have evaluated the performance of all the above methods using Rand index, Jaccard index and Minkowski index. Our comparative study demonstrates that the proposed GA is close to hierarchical clustering method as far as the performance is concerned.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2019.101208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

After the identification of several disease-associated polymorphisms by genome-wide association analysis, it is now clear that gene-gene interactions are fundamental mechanisms for the development of complex diseases. In this paper, we propose a genetic algorithm (GA) based clustering algorithm to identify groups of related genes in episodic memory. This clustering method required number of clusters and number of genes in each cluster and fitness function. In this paper, we have taken STRING 9.1 clustering method result on episodic memory. We have used “interaction between clusters” as a fitness function for the GA and have compared the result of GA based clustering algorithm with standard K-means, STRING 9.1 K-means, hierarchical and self-organising maps. We have evaluated the performance of all the above methods using Rand index, Jaccard index and Minkowski index. Our comparative study demonstrates that the proposed GA is close to hierarchical clustering method as far as the performance is concerned.
基于遗传算法的情景记忆基因-基因相互作用聚类
在通过全基因组关联分析确定了几种疾病相关多态性之后,现在很清楚基因-基因相互作用是复杂疾病发展的基本机制。本文提出了一种基于遗传算法(GA)的聚类算法来识别情景记忆中的相关基因群。这种聚类方法需要簇数、每簇中的基因数和适应度函数。本文采用STRING 9.1聚类方法对情景记忆进行聚类分析。我们使用“聚类之间的相互作用”作为遗传算法的适应度函数,并将基于遗传算法的聚类算法的结果与标准K-means、STRING 9.1 K-means、分层和自组织映射进行了比较。我们使用Rand指数、Jaccard指数和Minkowski指数对上述所有方法的性能进行了评估。我们的比较研究表明,就性能而言,所提出的遗传算法接近层次聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信