A Dense-Gated U-Net for Brain Lesion Segmentation

Zhongyi Ji, Xiao Han, Tong Lin, Wenmin Wang
{"title":"A Dense-Gated U-Net for Brain Lesion Segmentation","authors":"Zhongyi Ji, Xiao Han, Tong Lin, Wenmin Wang","doi":"10.1109/VCIP49819.2020.9301852","DOIUrl":null,"url":null,"abstract":"Brain lesion segmentation plays a crucial role in diagnosis and monitoring of disease progression. DenseNets have been widely used for medical image segmentation, but much redundancy arises in dense-connected feature maps and the training process becomes harder. In this paper, we address the brain lesion segmentation task by proposing a Dense-Gated U-Net (DGNet), which is a hybrid of Dense-gated blocks and U-Net. The main contribution lies in the dense-gated blocks that explicitly model dependencies among concatenated layers and alleviate redundancy. Based on dense-gated blocks, DGNet can achieve weighted concatenation and suppress useless features. Extensive experiments on MICCAI BraTS 2018 challenge and our collected intracranial hemorrhage dataset demonstrate that our approach outperforms a powerful backbone model and other state-of-the-art methods.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Brain lesion segmentation plays a crucial role in diagnosis and monitoring of disease progression. DenseNets have been widely used for medical image segmentation, but much redundancy arises in dense-connected feature maps and the training process becomes harder. In this paper, we address the brain lesion segmentation task by proposing a Dense-Gated U-Net (DGNet), which is a hybrid of Dense-gated blocks and U-Net. The main contribution lies in the dense-gated blocks that explicitly model dependencies among concatenated layers and alleviate redundancy. Based on dense-gated blocks, DGNet can achieve weighted concatenation and suppress useless features. Extensive experiments on MICCAI BraTS 2018 challenge and our collected intracranial hemorrhage dataset demonstrate that our approach outperforms a powerful backbone model and other state-of-the-art methods.
一种用于脑损伤分割的密集门控u网
脑损伤分割在疾病进展的诊断和监测中起着至关重要的作用。DenseNets已广泛应用于医学图像分割,但在密集连接的特征图中会产生大量冗余,训练过程变得困难。在本文中,我们提出了一个密集门控U-Net (DGNet),它是密集门控块和U-Net的混合。其主要贡献在于密集的封闭块,这些块显式地对连接层之间的依赖关系进行建模,并减轻了冗余。基于密集门控块,DGNet可以实现加权拼接并抑制无用特征。在MICCAI BraTS 2018挑战赛和我们收集的颅内出血数据集上进行的大量实验表明,我们的方法优于强大的骨干模型和其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信