Efficient annotation of image data sets for computer vision applications

Julia Möhrmann, G. Heidemann
{"title":"Efficient annotation of image data sets for computer vision applications","authors":"Julia Möhrmann, G. Heidemann","doi":"10.1145/2304496.2304498","DOIUrl":null,"url":null,"abstract":"High quality ground truth data sets are crucial for the development of image recognition systems. However, the task of annotating large image data sets manually takes a lot of time and effort. In order to lower the burden for the development of application-specific image recognition systems, we developed an advanced user interface. This interface is especially designed for non-expert users with little-to-no knowledge of computer vision techniques. The interface presents images clustered by similarity and allows for an efficient and simple annotation of large data sets. The integration of overview+detail concepts allows the precise navigation inside large data sets. The interface can be used without prior instructions on the underlying concepts, like self-organizing maps, image features or visualization techniques.","PeriodicalId":196376,"journal":{"name":"International Workshop on Video and Image Ground Truth in Computer Vision Applications","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Video and Image Ground Truth in Computer Vision Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2304496.2304498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

High quality ground truth data sets are crucial for the development of image recognition systems. However, the task of annotating large image data sets manually takes a lot of time and effort. In order to lower the burden for the development of application-specific image recognition systems, we developed an advanced user interface. This interface is especially designed for non-expert users with little-to-no knowledge of computer vision techniques. The interface presents images clustered by similarity and allows for an efficient and simple annotation of large data sets. The integration of overview+detail concepts allows the precise navigation inside large data sets. The interface can be used without prior instructions on the underlying concepts, like self-organizing maps, image features or visualization techniques.
计算机视觉应用中图像数据集的高效标注
高质量的地面真值数据集对于图像识别系统的发展至关重要。然而,手动注释大型图像数据集的任务需要花费大量的时间和精力。为了减轻特定应用图像识别系统的开发负担,我们开发了一个先进的用户界面。这个界面是特别为对计算机视觉技术知之甚少的非专业用户设计的。该界面根据相似性呈现图像,并允许对大型数据集进行有效而简单的注释。概览+细节概念的集成允许在大数据集中进行精确导航。无需事先说明基本概念,如自组织地图、图像特征或可视化技术,即可使用该界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信