{"title":"Scaling Parallel 3-D FFT with Non-Blocking MPI Collectives","authors":"Sukhyun Song, J. Hollingsworth","doi":"10.1109/ScalA.2014.9","DOIUrl":null,"url":null,"abstract":"This paper describes a new method for scalable high-performance parallel 3-D FFT. We use a 2-D decomposition of 3-D arrays to increase scaling to a large number of cores. In order to achieve high performance, we use non-blocking MPI all-to-all operations and exploit computation-communication overlap. We also auto-tune our 3-D FFT code efficiently in a large parameter space and cope with the complex trade-off in optimizing our code in various system environments. According to experimental results with up to 32,768 cores, our method computes parallel 3-D FFT faster than the FFTW library by up to 1.83×.","PeriodicalId":323689,"journal":{"name":"2014 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems","volume":"423 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ScalA.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper describes a new method for scalable high-performance parallel 3-D FFT. We use a 2-D decomposition of 3-D arrays to increase scaling to a large number of cores. In order to achieve high performance, we use non-blocking MPI all-to-all operations and exploit computation-communication overlap. We also auto-tune our 3-D FFT code efficiently in a large parameter space and cope with the complex trade-off in optimizing our code in various system environments. According to experimental results with up to 32,768 cores, our method computes parallel 3-D FFT faster than the FFTW library by up to 1.83×.