An image resampling method using combined directional kernels

A. Nasonov, A. Krylov, Konstantin Chesnakov
{"title":"An image resampling method using combined directional kernels","authors":"A. Nasonov, A. Krylov, Konstantin Chesnakov","doi":"10.1109/EUVIP.2016.7764602","DOIUrl":null,"url":null,"abstract":"A new edge-directional image resampling method is proposed. The method uses a weighted sum of two adaptive 4x4 interpolation kernels to construct high-resolution pixels. The weights are chosen according to the local gradient features for each pixel. The interpolation kernels are learned using pairs of low- and high-resolution images taken from LIVE image database. The method has low complexity and low memory consumption. It outperforms existing fast edge-directional image interpolation methods.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new edge-directional image resampling method is proposed. The method uses a weighted sum of two adaptive 4x4 interpolation kernels to construct high-resolution pixels. The weights are chosen according to the local gradient features for each pixel. The interpolation kernels are learned using pairs of low- and high-resolution images taken from LIVE image database. The method has low complexity and low memory consumption. It outperforms existing fast edge-directional image interpolation methods.
一种基于组合方向核的图像重采样方法
提出了一种新的边缘定向图像重采样方法。该方法使用两个自适应4x4插值核的加权和来构建高分辨率像素。根据每个像素的局部梯度特征选择权重。利用从LIVE图像数据库中获取的低分辨率和高分辨率图像对学习插值核。该方法具有低复杂度和低内存消耗的特点。它优于现有的快速边缘方向图像插值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信