Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network

Alisson Marques da Silva, W. Caminhas, A. Lemos, F. Gomide
{"title":"Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network","authors":"Alisson Marques da Silva, W. Caminhas, A. Lemos, F. Gomide","doi":"10.1109/CICA.2014.7013229","DOIUrl":null,"url":null,"abstract":"This paper presents an evolving neuro-fuzzy network approach (eNFN) to model a twin rotor MIMO system (TRMS) with two degrees of freedom in real-time. The TRMS is a fast, nonlinear, open loop unstable time-varying dynamic system, with cross coupling between the rotors. Modeling and control of TRMS require high sampling rates, typically in the order of milliseconds. Actual laboratory implementation shows that eNFN is fast, effective, and accurately models the TRMS in real-time. The eNFN captures the TRMS system dynamics quickly, and develops precise low cost models from the point of view of time and space complexity. The results suggest eNFN as a potential candidate to model complex, fast time-varying dynamic systems in real-time.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"423 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper presents an evolving neuro-fuzzy network approach (eNFN) to model a twin rotor MIMO system (TRMS) with two degrees of freedom in real-time. The TRMS is a fast, nonlinear, open loop unstable time-varying dynamic system, with cross coupling between the rotors. Modeling and control of TRMS require high sampling rates, typically in the order of milliseconds. Actual laboratory implementation shows that eNFN is fast, effective, and accurately models the TRMS in real-time. The eNFN captures the TRMS system dynamics quickly, and develops precise low cost models from the point of view of time and space complexity. The results suggest eNFN as a potential candidate to model complex, fast time-varying dynamic systems in real-time.
基于演化神经模糊网络的双转子MIMO系统实时非线性建模
本文提出了一种进化神经模糊网络方法(eNFN)来对双自由度双转子MIMO系统(TRMS)进行实时建模。TRMS是一个快速的、非线性的、开环的不稳定时变动态系统,转子之间存在交叉耦合。TRMS的建模和控制需要高采样率,通常以毫秒为单位。实验室实际应用表明,eNFN快速、有效、准确地实时模拟了TRMS。eNFN快速捕获TRMS系统动态,并从时间和空间复杂性的角度开发精确的低成本模型。结果表明,eNFN是一种潜在的候选模型,可以实时模拟复杂、快速的时变动态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信