Average-case analyses of first fit and random fit bin packing

S. Albers, M. Mitzenmacher
{"title":"Average-case analyses of first fit and random fit bin packing","authors":"S. Albers, M. Mitzenmacher","doi":"10.1002/(SICI)1098-2418(200005)16:3%3C240::AID-RSA2%3E3.0.CO;2-V","DOIUrl":null,"url":null,"abstract":"We prove that the First Fit bin packing algorithm is stable under the input distribution U”k − 2; k• for all k ≥ 3, settling an open question from the recent survey by Coffman, Garey, and Johnson [“Approximation algorithms for bin backing: A survey,” Approximation algorithms for NP-hard problems, D. Hochbaum (Editor), PWS, Boston, 1996]. Our proof generalizes the multidimensional Markov chain analysis used by Kenyon, Sinclair, and Rabani to prove that Best Fit is also stable under these distributions [Proc Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 351–358]. Our proof is motivated by an analysis of Random Fit, a new simple packing algorithm related to First Fit, that is interesting in its own right. We show that Random Fit is stable under the input distributions U”k− 2; k•, as well as present worst case bounds and some results on distributions U”k− 1; k• and U”k; k• for Random Fit. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16, 240–259, 2000 Correspondence to: Michael Mitzenmacher. *Most of this work was done while at the Max-Planch-Institut fur Informatik, Saarbrucken, Germany. † A substantial portion of this research was done while at the Computer Science Department, UC Berkeley and Digital Equipment Corporation Systems Research Center. Contract grant sponsor: National Science Foundation. Contract grant number: CCR-9505448. © 2000 John Wiley & Sons, Inc.","PeriodicalId":303496,"journal":{"name":"Random Struct. Algorithms","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Struct. Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1098-2418(200005)16:3%3C240::AID-RSA2%3E3.0.CO;2-V","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

We prove that the First Fit bin packing algorithm is stable under the input distribution U”k − 2; k• for all k ≥ 3, settling an open question from the recent survey by Coffman, Garey, and Johnson [“Approximation algorithms for bin backing: A survey,” Approximation algorithms for NP-hard problems, D. Hochbaum (Editor), PWS, Boston, 1996]. Our proof generalizes the multidimensional Markov chain analysis used by Kenyon, Sinclair, and Rabani to prove that Best Fit is also stable under these distributions [Proc Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 351–358]. Our proof is motivated by an analysis of Random Fit, a new simple packing algorithm related to First Fit, that is interesting in its own right. We show that Random Fit is stable under the input distributions U”k− 2; k•, as well as present worst case bounds and some results on distributions U”k− 1; k• and U”k; k• for Random Fit. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16, 240–259, 2000 Correspondence to: Michael Mitzenmacher. *Most of this work was done while at the Max-Planch-Institut fur Informatik, Saarbrucken, Germany. † A substantial portion of this research was done while at the Computer Science Department, UC Berkeley and Digital Equipment Corporation Systems Research Center. Contract grant sponsor: National Science Foundation. Contract grant number: CCR-9505448. © 2000 John Wiley & Sons, Inc.
首次拟合和随机拟合装箱的平均情况分析
证明了First Fit装箱算法在输入分布U′k−2下是稳定的;k *对于所有k≥3,解决了Coffman, Garey和Johnson最近调查中的一个开放问题[“bin支持的近似算法:调查”,np困难问题的近似算法,D. Hochbaum(编辑),PWS, Boston, 1996]。我们的证明推广了Kenyon, Sinclair和Rabani使用的多维马尔可夫链分析,以证明在这些分布下最佳拟合也是稳定的[Proc第七届ACM-SIAM离散算法研讨会,1995,pp. 351-358]。我们的证明是由对Random Fit的分析激发的,Random Fit是一种与First Fit相关的新的简单打包算法,它本身就很有趣。我们证明了随机拟合在输入分布k−2下是稳定的;k *,以及在分布U * k−1上给出的最坏情况边界和一些结果;k & & k;k·表示随机拟合。©2000 John Wiley & Sons, Inc随机结构。Alg。通讯作者:Michael Mitzenmacher。*大部分工作是在德国萨尔布吕肯的马克斯-普朗奇信息研究所完成的。†这项研究的很大一部分是在加州大学伯克利分校计算机科学系和数字设备公司系统研究中心完成的。合同资助单位:美国国家科学基金会。合同授予号:CCR-9505448。©2000 John Wiley & Sons, Inc
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信