Multidimensional Data-driven Load Identification Device Based on CS5463 Module

Ling Xiang, Wu Wancheng, Zhang Xu, Liu Yilong, Dai Yongzheng
{"title":"Multidimensional Data-driven Load Identification Device Based on CS5463 Module","authors":"Ling Xiang, Wu Wancheng, Zhang Xu, Liu Yilong, Dai Yongzheng","doi":"10.1109/CEEPE55110.2022.9783260","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a device for analyzing and identifying electrical appliances, which takes the CS5463 module as the core and STM32F407 microcontroller as the control center. This device can collect the multi-dimensional electrical parameters of the measured load, such as voltage, current, harmonic content, and power. Based on the collected data, we can analyze the electrical characteristics of the load in different states, with algorithms such as CUSUM based on compound windows and wavelet analysis. Finally, using the comprehensive use of the power factor method, table look-up method, and direct discrimination method, we can realize the identification of the types of electrical appliances in the state of multiple electrical appliances coupling.","PeriodicalId":118143,"journal":{"name":"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE55110.2022.9783260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we introduce a device for analyzing and identifying electrical appliances, which takes the CS5463 module as the core and STM32F407 microcontroller as the control center. This device can collect the multi-dimensional electrical parameters of the measured load, such as voltage, current, harmonic content, and power. Based on the collected data, we can analyze the electrical characteristics of the load in different states, with algorithms such as CUSUM based on compound windows and wavelet analysis. Finally, using the comprehensive use of the power factor method, table look-up method, and direct discrimination method, we can realize the identification of the types of electrical appliances in the state of multiple electrical appliances coupling.
基于CS5463模块的多维数据驱动载荷识别装置
本文介绍了一种以CS5463模块为核心,以STM32F407单片机为控制中心的电器分析识别装置。该装置可以采集被测负载的电压、电流、谐波含量、功率等多维电参数。根据采集到的数据,利用基于复合窗的CUSUM算法和小波分析等算法分析负载在不同状态下的电特性。最后综合运用功率因数法、查表法、直接判别法,实现多电器耦合状态下的电器种类识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信