Real-time elastic partial shape matching using a neural network-based adjoint method

Alban Odot, G. Mestdagh, Y. Privat, S. Cotin
{"title":"Real-time elastic partial shape matching using a neural network-based adjoint method","authors":"Alban Odot, G. Mestdagh, Y. Privat, S. Cotin","doi":"10.48550/arXiv.2303.09343","DOIUrl":null,"url":null,"abstract":"Surface matching usually provides significant deformations that can lead to structural failure due to the lack of physical policy. In this context, partial surface matching of non-linear deformable bodies is crucial in engineering to govern structure deformations. In this article, we propose to formulate the registration problem as an optimal control problem using an artificial neural network where the unknown is the surface force distribution that applies to the object and the resulting deformation computed using a hyper-elastic model. The optimization problem is solved using an adjoint method where the hyper-elastic problem is solved using the feed-forward neural network and the adjoint problem is obtained through the backpropagation of the network. Our process improves the computation speed by multiple orders of magnitude while providing acceptable registration errors.","PeriodicalId":146403,"journal":{"name":"International Conferences on Optimization and Learning","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conferences on Optimization and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.09343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface matching usually provides significant deformations that can lead to structural failure due to the lack of physical policy. In this context, partial surface matching of non-linear deformable bodies is crucial in engineering to govern structure deformations. In this article, we propose to formulate the registration problem as an optimal control problem using an artificial neural network where the unknown is the surface force distribution that applies to the object and the resulting deformation computed using a hyper-elastic model. The optimization problem is solved using an adjoint method where the hyper-elastic problem is solved using the feed-forward neural network and the adjoint problem is obtained through the backpropagation of the network. Our process improves the computation speed by multiple orders of magnitude while providing acceptable registration errors.
基于神经网络的实时弹性部分形状匹配方法
由于缺乏物理策略,表面匹配通常会产生明显的变形,从而导致结构破坏。在此背景下,非线性变形体的局部曲面匹配是控制结构变形的关键。在本文中,我们建议使用人工神经网络将配准问题表述为最优控制问题,其中未知因素是适用于对象的表面力分布以及使用超弹性模型计算的由此产生的变形。采用伴随方法求解优化问题,其中超弹性问题采用前馈神经网络求解,伴随问题通过网络的反向传播得到。我们的方法在提供可接受的配准误差的同时,将计算速度提高了多个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信