Identifying Frequent Items in P2P Systems

Mei Li, Wang-Chien Lee
{"title":"Identifying Frequent Items in P2P Systems","authors":"Mei Li, Wang-Chien Lee","doi":"10.1109/ICDCS.2008.78","DOIUrl":null,"url":null,"abstract":"As peer-to-peer (P2P) systems receive growing acceptance, the need of identifying 'frequent items' in such systems appears in a variety of applications. In this paper, we define the problem of identifying frequent items (IFI) and propose an efficient in-network processing technique, called in-network filtering (netFilter), to address this important fundamental problem. netFilter operates in two phases: 1) candidate filtering: data items are grouped into item groups to obtain aggregates for pruning of infrequent items; and 2) candidate verification: the aggregates for the remaining candidate items are obtained to filter out false frequent items. We address various issues faced in realizing netFilter, including aggregate computation, candidate set optimization, and candidate set materialization. In addition, we analyze the performance of netFilter, derive the optimal setting analytically, and discuss how to achieve the optimal setting in practice. Finally, we validate the effectiveness of netFilter through extensive simulation.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

As peer-to-peer (P2P) systems receive growing acceptance, the need of identifying 'frequent items' in such systems appears in a variety of applications. In this paper, we define the problem of identifying frequent items (IFI) and propose an efficient in-network processing technique, called in-network filtering (netFilter), to address this important fundamental problem. netFilter operates in two phases: 1) candidate filtering: data items are grouped into item groups to obtain aggregates for pruning of infrequent items; and 2) candidate verification: the aggregates for the remaining candidate items are obtained to filter out false frequent items. We address various issues faced in realizing netFilter, including aggregate computation, candidate set optimization, and candidate set materialization. In addition, we analyze the performance of netFilter, derive the optimal setting analytically, and discuss how to achieve the optimal setting in practice. Finally, we validate the effectiveness of netFilter through extensive simulation.
识别P2P系统中的频繁项目
随着点对点(P2P)系统得到越来越多的认可,在这种系统中识别“频繁项”的需求出现在各种应用中。在本文中,我们定义了识别频繁项(IFI)的问题,并提出了一种有效的网络内处理技术,称为网络内过滤(netFilter),以解决这一重要的基本问题。netFilter的工作分为两个阶段:1)候选过滤:将数据项分组到项组中,获得聚合,对不常见的项进行修剪;2)候选验证:得到剩余候选项的聚合,过滤掉虚假频繁项。我们解决了实现netFilter时面临的各种问题,包括聚合计算、候选集优化和候选集物化。此外,我们对netFilter的性能进行了分析,得出了最优设置,并讨论了在实践中如何实现最优设置。最后,我们通过大量的仿真验证了netFilter的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信