Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi
{"title":"Coarse-to-fine parameter tuning for content-based object categorization","authors":"Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi","doi":"10.1109/PRIA.2017.7983038","DOIUrl":null,"url":null,"abstract":"Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.