Real-time static custom gestures recognition based on skeleton hand

Alexander Osipov, M. Ostanin
{"title":"Real-time static custom gestures recognition based on skeleton hand","authors":"Alexander Osipov, M. Ostanin","doi":"10.1109/NIR52917.2021.9665809","DOIUrl":null,"url":null,"abstract":"Gesture recognition is one of the natural ways of human-computer interaction (HCI) that will positively affect their use. This paper presents an approach for real-time static gestures recognition based on the skeleton of a hand using a MediaPipe framework and Support Vector Machine(SVM) classification. The approach demonstrated high accuracy of recognition gestures 98.74% on a dataset of sign-digit-gestures as well as runtime 71 fps. Moreover, the approach is required only one camera sensor for recognition. The proposed approach can be extended for dynamic gesture recognition and used to control robots and computer devices.","PeriodicalId":333109,"journal":{"name":"2021 International Conference \"Nonlinearity, Information and Robotics\" (NIR)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference \"Nonlinearity, Information and Robotics\" (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR52917.2021.9665809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Gesture recognition is one of the natural ways of human-computer interaction (HCI) that will positively affect their use. This paper presents an approach for real-time static gestures recognition based on the skeleton of a hand using a MediaPipe framework and Support Vector Machine(SVM) classification. The approach demonstrated high accuracy of recognition gestures 98.74% on a dataset of sign-digit-gestures as well as runtime 71 fps. Moreover, the approach is required only one camera sensor for recognition. The proposed approach can be extended for dynamic gesture recognition and used to control robots and computer devices.
基于骨架手的实时静态自定义手势识别
手势识别是人机交互(HCI)的一种自然方式,将对其使用产生积极的影响。本文提出了一种基于MediaPipe框架和支持向量机(SVM)分类的手部骨架实时静态手势识别方法。该方法在符号-数字-手势数据集上的识别准确率高达98.74%,运行时间为71 fps。此外,该方法只需要一个相机传感器即可进行识别。所提出的方法可以扩展到动态手势识别,并用于控制机器人和计算机设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信