Indoor Localization and Navigation Control Strategies for a Mobile Robot Designed to Inspect Confined Environments

Adriano M. C. Rezende, G. P. C. Júnior, R. Fernandes, Victor R. F. Miranda, Héctor Azpúrua, G. Pessin, G. Freitas
{"title":"Indoor Localization and Navigation Control Strategies for a Mobile Robot Designed to Inspect Confined Environments","authors":"Adriano M. C. Rezende, G. P. C. Júnior, R. Fernandes, Victor R. F. Miranda, Héctor Azpúrua, G. Pessin, G. Freitas","doi":"10.1109/CASE48305.2020.9217005","DOIUrl":null,"url":null,"abstract":"Localization is critical for autonomous robot operation, and selecting a suitable method for pose estimation is still a challenging task. In this sense, this paper investigates different localization and navigation control strategies deployed into the EspeleoRobô, a robotic platform designed by the Brazilian mining company Vale S.A. to inspect confined areas. We compare the pose estimation algorithms based on wheel, visual and LiDAR odometry, and also Ultra-Wideband radio signals, all fused with IMU (Inertial Measurement Unit) data. Our experiments consider both teleoperated and autonomous robot operation. The robot’s autonomous navigation is based on an artificial vector fields controller, which uses the different pose estimations as feedback to guide the robot through pre-defined paths. Real experiments performed in indoor environments illustrate the performance of each estimator. Finally, preliminary mapping results states for the LiDAR SLAM (Simultaneous Localization and Mapping) approach as a promising option for practical field operations.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9217005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Localization is critical for autonomous robot operation, and selecting a suitable method for pose estimation is still a challenging task. In this sense, this paper investigates different localization and navigation control strategies deployed into the EspeleoRobô, a robotic platform designed by the Brazilian mining company Vale S.A. to inspect confined areas. We compare the pose estimation algorithms based on wheel, visual and LiDAR odometry, and also Ultra-Wideband radio signals, all fused with IMU (Inertial Measurement Unit) data. Our experiments consider both teleoperated and autonomous robot operation. The robot’s autonomous navigation is based on an artificial vector fields controller, which uses the different pose estimations as feedback to guide the robot through pre-defined paths. Real experiments performed in indoor environments illustrate the performance of each estimator. Finally, preliminary mapping results states for the LiDAR SLAM (Simultaneous Localization and Mapping) approach as a promising option for practical field operations.
受限环境下移动机器人的室内定位与导航控制策略
定位是机器人自主操作的关键,选择合适的姿态估计方法仍然是一个具有挑战性的任务。从这个意义上讲,本文研究了部署在EspeleoRobô中的不同定位和导航控制策略,EspeleoRobô是巴西矿业公司Vale S.A.设计的机器人平台,用于检查受限区域。我们比较了基于车轮、视觉和激光雷达里程计以及超宽带无线电信号的姿态估计算法,所有这些算法都融合了IMU(惯性测量单元)数据。我们的实验考虑了遥控和自主机器人操作。机器人的自主导航基于人工向量场控制器,该控制器使用不同的姿态估计作为反馈,引导机器人通过预定义的路径。在室内环境中进行的实际实验说明了每个估计器的性能。最后,初步测绘结果表明,激光雷达SLAM(同步定位和测绘)方法是实际现场作业的一个有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信