{"title":"Enhancing the Performance Portability of Heterogeneous Circuit Analysis Programs","authors":"Tsung-Wei Huang","doi":"10.1109/HPEC55821.2022.9926380","DOIUrl":null,"url":null,"abstract":"Recently, CPU-GPU heterogeneous parallelism has brought transformational performance milestones to static timing analysis (STA) algorithms. As the computing ecosystem continues to proliferate, performance portability has emerged as a new challenge when deploying the result to diverse heterogeneous computing platforms. Specifically, the optimal code written on a CPU-GPU architecture may not be optimal for other CPU-GPU architectures, due to various performance, interoperability, and availability constraints. As a result, we introduce in this paper a learning-based framework to enhance the performance portability of a GPU-accelerated STA program. We parameterize important performance parameters and leverage a neural network model to adapt performance optimization to any given computing platforms. We have demonstrated the effectiveness of our framework in real STA applications.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, CPU-GPU heterogeneous parallelism has brought transformational performance milestones to static timing analysis (STA) algorithms. As the computing ecosystem continues to proliferate, performance portability has emerged as a new challenge when deploying the result to diverse heterogeneous computing platforms. Specifically, the optimal code written on a CPU-GPU architecture may not be optimal for other CPU-GPU architectures, due to various performance, interoperability, and availability constraints. As a result, we introduce in this paper a learning-based framework to enhance the performance portability of a GPU-accelerated STA program. We parameterize important performance parameters and leverage a neural network model to adapt performance optimization to any given computing platforms. We have demonstrated the effectiveness of our framework in real STA applications.