On the strong divergence of Hilbert transform approximations from sampled data

H. Boche, V. Pohl
{"title":"On the strong divergence of Hilbert transform approximations from sampled data","authors":"H. Boche, V. Pohl","doi":"10.1109/SAMPTA.2015.7148883","DOIUrl":null,"url":null,"abstract":"It is known that every linear method which determines the Hilbert transform from the samples of the function diverges (weakly). This paper presents strong evidence that all such methods even diverge strongly. It is shown that the common approximation method derived from the conjugate Fej'er means diverges strongly, and that all reasonable approximation methods with a finite search horizon diverge strongly. Moreover, the paper discusses the relation between strong divergence and the existence of adaptive approximation methods.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is known that every linear method which determines the Hilbert transform from the samples of the function diverges (weakly). This paper presents strong evidence that all such methods even diverge strongly. It is shown that the common approximation method derived from the conjugate Fej'er means diverges strongly, and that all reasonable approximation methods with a finite search horizon diverge strongly. Moreover, the paper discusses the relation between strong divergence and the existence of adaptive approximation methods.
抽样数据希尔伯特变换近似的强散度
众所周知,从函数的样本确定希尔伯特变换的每一种线性方法都是(弱)发散的。本文提供了强有力的证据,证明所有这些方法甚至都是强发散的。结果表明,由共轭fejer均值推导出的一般近似方法有很强的发散性,在有限搜索视界下,所有合理的近似方法都有很强的发散性。此外,本文还讨论了强发散与自适应逼近方法的存在性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信