Facial Expression Recognition using Convolutional Neural Network and Haar Classifier

Arjun Dinesh S, S. R, Anand A
{"title":"Facial Expression Recognition using Convolutional Neural Network and Haar Classifier","authors":"Arjun Dinesh S, S. R, Anand A","doi":"10.1109/ICECONF57129.2023.10083838","DOIUrl":null,"url":null,"abstract":"Human emotion recognition is essential for human-machine interaction and interpersonal communication. Utilizing facial expression analysis, this proposed work investigates Facial Expression Recognition (FERS) method using convolutional neural network and HAAR classifier. Face detection begins with the HAAR cascade model, lighting alteration to achieve face homogeneity, and morphological approaches to keep the key face component. The use of our cutting-edge deep convolutional network provides the gadget with capabilities comparable to those of a person. We have a tendency to appropriately project both a superficial and deep network for typical human face expressions. We have also adjusted several of the network's parameters and filters to boost accuracy 98.4%. Our proposed model is able to accurately categorise seven distinct emotional states.","PeriodicalId":436733,"journal":{"name":"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECONF57129.2023.10083838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human emotion recognition is essential for human-machine interaction and interpersonal communication. Utilizing facial expression analysis, this proposed work investigates Facial Expression Recognition (FERS) method using convolutional neural network and HAAR classifier. Face detection begins with the HAAR cascade model, lighting alteration to achieve face homogeneity, and morphological approaches to keep the key face component. The use of our cutting-edge deep convolutional network provides the gadget with capabilities comparable to those of a person. We have a tendency to appropriately project both a superficial and deep network for typical human face expressions. We have also adjusted several of the network's parameters and filters to boost accuracy 98.4%. Our proposed model is able to accurately categorise seven distinct emotional states.
基于卷积神经网络和Haar分类器的面部表情识别
人类情感识别是人机交互和人际交流的必要条件。本文以面部表情分析为基础,研究了基于卷积神经网络和HAAR分类器的面部表情识别方法。人脸检测从HAAR级联模型开始,通过光照变化来实现人脸的均匀性,通过形态学方法来保持关键的人脸成分。使用我们最先进的深度卷积网络为这个小工具提供了与人相当的能力。我们倾向于为典型的人类面部表情适当地投射一个表层和深层的网络。我们还调整了几个网络参数和过滤器,将准确率提高了98.4%。我们提出的模型能够准确地将七种不同的情绪状态分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信