AutoDerain: Memory-efficient Neural Architecture Search for Image Deraining

Jun Fu, Chen Hou, Zhibo Chen
{"title":"AutoDerain: Memory-efficient Neural Architecture Search for Image Deraining","authors":"Jun Fu, Chen Hou, Zhibo Chen","doi":"10.1109/VCIP53242.2021.9675339","DOIUrl":null,"url":null,"abstract":"Learning-based image deraining methods have achieved remarkable success in the past few decades. Currently, most deraining architectures are developed by human experts, which is a laborious and error-prone process. In this paper, we present a study on employing neural architecture search (NAS) to automatically design deraining architectures, dubbed AutoDerain. Specifically, we first propose an U-shaped deraining architecture, which mainly consists of residual squeeze-and-excitation blocks (RSEBs). Then, we define a search space, where we search for the convolutional types and the use of the squeeze-and-excitation block. Considering that the differentiable architecture search is memory-intensive, we propose a memory-efficient differentiable architecture search scheme (MDARTS). In light of the success of training binary neural networks, MDARTS optimizes architecture parameters through the proximal gradient, which only consumes the same GPU memory as training a single deraining model. Experimental results demonstrate that the architecture designed by MDARTS is superior to manually designed derainers.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based image deraining methods have achieved remarkable success in the past few decades. Currently, most deraining architectures are developed by human experts, which is a laborious and error-prone process. In this paper, we present a study on employing neural architecture search (NAS) to automatically design deraining architectures, dubbed AutoDerain. Specifically, we first propose an U-shaped deraining architecture, which mainly consists of residual squeeze-and-excitation blocks (RSEBs). Then, we define a search space, where we search for the convolutional types and the use of the squeeze-and-excitation block. Considering that the differentiable architecture search is memory-intensive, we propose a memory-efficient differentiable architecture search scheme (MDARTS). In light of the success of training binary neural networks, MDARTS optimizes architecture parameters through the proximal gradient, which only consumes the same GPU memory as training a single deraining model. Experimental results demonstrate that the architecture designed by MDARTS is superior to manually designed derainers.
AutoDerain:高效记忆神经架构搜索图像derain
在过去的几十年里,基于学习的图像训练方法取得了显著的成功。目前,大多数培训体系结构是由人类专家开发的,这是一个费力且容易出错的过程。在本文中,我们提出了一种使用神经架构搜索(NAS)来自动设计脱轨架构的研究,称为AutoDerain。具体而言,我们首先提出了一个u型脱轨架构,该架构主要由残余挤压和激励块(rseb)组成。然后,我们定义了一个搜索空间,在那里我们搜索卷积类型和使用压缩和激励块。考虑到可微架构搜索是内存密集型的,我们提出了一种内存高效的可微架构搜索方案(mdart)。鉴于二元神经网络训练的成功,MDARTS通过近端梯度优化体系结构参数,其消耗的GPU内存与训练单个脱模模型相同。实验结果表明,MDARTS设计的体系结构优于手工设计的脱模器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信