Aspect-level sentiment classification based on aspect-oriented information and inter-aspect relations

Luwen Zhang, Ming Liu
{"title":"Aspect-level sentiment classification based on aspect-oriented information and inter-aspect relations","authors":"Luwen Zhang, Ming Liu","doi":"10.1117/12.2682436","DOIUrl":null,"url":null,"abstract":"Aspect-level sentiment classification aims to determine the sentiment polarity of a given target aspect in a sentence. To solve the problem of ignored the impact of noise in sentences and sentiment relations between different aspects on the sentiment classification performance of models in the current studies, this paper proposes an aspect-oriented syntactic dependency graph and an inter-aspect dependency tree. Based on it, an interactive graph attention network model is proposed to extract sentiment features of the target aspect by exploiting aspect-oriented and inter-aspect information. Experimental results on SemEval-2014 and Twiter datasets show that the sentiment classification ability of the model is superior to the baseline models, and the accuracy of sentiment classification on restaurant review dataset (Rest14) reach 83.36%.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"416 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect-level sentiment classification aims to determine the sentiment polarity of a given target aspect in a sentence. To solve the problem of ignored the impact of noise in sentences and sentiment relations between different aspects on the sentiment classification performance of models in the current studies, this paper proposes an aspect-oriented syntactic dependency graph and an inter-aspect dependency tree. Based on it, an interactive graph attention network model is proposed to extract sentiment features of the target aspect by exploiting aspect-oriented and inter-aspect information. Experimental results on SemEval-2014 and Twiter datasets show that the sentiment classification ability of the model is superior to the baseline models, and the accuracy of sentiment classification on restaurant review dataset (Rest14) reach 83.36%.
基于面向方面信息和方面间关系的方面级情感分类
方面级情感分类的目的是确定句子中给定目标方面的情感极性。为了解决目前研究中忽略句子噪声和不同方面之间的情感关系对模型情感分类性能影响的问题,本文提出了面向方面的句法依赖图和面向方面的依赖树。在此基础上,提出了一种交互式图注意网络模型,利用面向方面和面向方面的信息提取目标方面的情感特征。在SemEval-2014和twitter数据集上的实验结果表明,该模型的情感分类能力优于基线模型,在餐厅评论数据集(Rest14)上的情感分类准确率达到83.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信