PIRS: Pseudo Inversion Based Recovery of Speech Signals

H. Ajorloo, A. Lakdashti, M. Manzuri-Shalmani
{"title":"PIRS: Pseudo Inversion Based Recovery of Speech Signals","authors":"H. Ajorloo, A. Lakdashti, M. Manzuri-Shalmani","doi":"10.1109/ISSPIT.2007.4458131","DOIUrl":null,"url":null,"abstract":"Communication of speech over error prone channels such as wireless channels and internet usually suffers from loss of large number of adjacent samples. In this paper, we propose to make artificial correlation between speech samples which distorts it. By choosing appropriate parameters, one can control this distortion to lie below acceptable ranges. Using this correlation, the receiver can recover lost samples up to a certain limit using our proposed algorithm. Experimental results show that our solution overcomes a previous one reported in the literature specially when the amount of lost samples are below the mentioned limit.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"47 29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Communication of speech over error prone channels such as wireless channels and internet usually suffers from loss of large number of adjacent samples. In this paper, we propose to make artificial correlation between speech samples which distorts it. By choosing appropriate parameters, one can control this distortion to lie below acceptable ranges. Using this correlation, the receiver can recover lost samples up to a certain limit using our proposed algorithm. Experimental results show that our solution overcomes a previous one reported in the literature specially when the amount of lost samples are below the mentioned limit.
PIRS:基于伪反转的语音信号恢复
在无线信道和互联网等容易出错的信道上进行语音通信,通常会丢失大量相邻样本。在本文中,我们提出在语音样本之间进行人工相关,从而使语音样本失真。通过选择适当的参数,可以将这种失真控制在可接受的范围以下。利用这种相关性,使用我们提出的算法,接收器可以在一定限度内恢复丢失的样本。实验结果表明,我们的解决方案克服了以往文献报道的解决方案,特别是当样品丢失量低于上述限制时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信