A comparative study of fast dense stereo vision algorithms

H. Sunyoto, W. V. D. Mark, D. Gavrila
{"title":"A comparative study of fast dense stereo vision algorithms","authors":"H. Sunyoto, W. V. D. Mark, D. Gavrila","doi":"10.1109/IVS.2004.1336402","DOIUrl":null,"url":null,"abstract":"With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we presents a framework of real-time dense stereo vision algorithms that all based on a SIMD architecture. We distinguish different methodical components and examine their performance-speed trade-off. We furthermore compare the resulting algorithmic variations with an existing public source dynamic programming implementation from OpenCV and with the stereo methods discussed in Sharstein and Szeliski's survey. Unlike the previous, we evaluate all stereo vision algorithms using realistically looking simulated data as well as real data, from complex urban traffic scenes.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we presents a framework of real-time dense stereo vision algorithms that all based on a SIMD architecture. We distinguish different methodical components and examine their performance-speed trade-off. We furthermore compare the resulting algorithmic variations with an existing public source dynamic programming implementation from OpenCV and with the stereo methods discussed in Sharstein and Szeliski's survey. Unlike the previous, we evaluate all stereo vision algorithms using realistically looking simulated data as well as real data, from complex urban traffic scenes.
快速密集立体视觉算法的比较研究
随着最近硬件的进步,实时密集立体视觉在通用处理器上变得越来越可行。这对智能车辆领域有重要的好处,减轻了感知复杂、混乱的交通场景时的目标分割问题。在本文中,我们提出了一个基于SIMD架构的实时密集立体视觉算法框架。我们区分了不同的方法组件,并检查了它们的性能-速度权衡。我们进一步将所得的算法变化与OpenCV现有的公共源动态规划实现以及Sharstein和Szeliski调查中讨论的立体方法进行了比较。与之前不同的是,我们使用来自复杂城市交通场景的逼真模拟数据和真实数据来评估所有立体视觉算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信