A Hybrid Structure/Trajectory Constraint for Visual SLAM

Angélique Loesch, S. Bourgeois, V. Gay-Bellile, M. Dhome
{"title":"A Hybrid Structure/Trajectory Constraint for Visual SLAM","authors":"Angélique Loesch, S. Bourgeois, V. Gay-Bellile, M. Dhome","doi":"10.1109/3DV.2016.12","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid structure/trajectory constraint, that uses output camera poses of a model-based tracker, for object localization with SLAM algorithm. This constraint takes into account the structure information given by a CAD model while relying on the formalism of trajectory constraints. It has the advantages to be compact in memory and to accelerate the SLAM optimization process. The accuracy and robustness of the resulting localization as well as the memory and time gains are evaluated on synthetic and real data. Videos are available as supplementary material.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a hybrid structure/trajectory constraint, that uses output camera poses of a model-based tracker, for object localization with SLAM algorithm. This constraint takes into account the structure information given by a CAD model while relying on the formalism of trajectory constraints. It has the advantages to be compact in memory and to accelerate the SLAM optimization process. The accuracy and robustness of the resulting localization as well as the memory and time gains are evaluated on synthetic and real data. Videos are available as supplementary material.
视觉SLAM的混合结构/轨迹约束
本文提出了一种基于模型的跟踪器输出相机姿态的混合结构/轨迹约束,用于SLAM算法的目标定位。该约束依赖于轨迹约束的形式化,同时考虑了CAD模型给出的结构信息。它具有内存紧凑和加速SLAM优化过程的优点。在合成数据和实际数据上对定位结果的准确性和鲁棒性以及记忆和时间增益进行了评估。视频可作为补充资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信