A computational model for motion detection and direction discrimination in humans

Yang Song, P. Perona
{"title":"A computational model for motion detection and direction discrimination in humans","authors":"Yang Song, P. Perona","doi":"10.1109/HUMO.2000.897364","DOIUrl":null,"url":null,"abstract":"Seeing biological motion is very important for both humans and computers. Psychophysics experiments show that the ability of our visual system for biological motion detection and direction discrimination is different from that for simple translation. The existing quantitative models of motion perception cannot explain these findings. We propose a computational model, which uses learning and statistical inference based on the joint probability density function (PDF) of the position and motion of the body, on stimuli similar to (Neri et al., 1998). Our results are consistent with the psychophysics indicating that our model is consistent with human motion perception, accounting for both biological motion and pure translation.","PeriodicalId":384462,"journal":{"name":"Proceedings Workshop on Human Motion","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Workshop on Human Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMO.2000.897364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Seeing biological motion is very important for both humans and computers. Psychophysics experiments show that the ability of our visual system for biological motion detection and direction discrimination is different from that for simple translation. The existing quantitative models of motion perception cannot explain these findings. We propose a computational model, which uses learning and statistical inference based on the joint probability density function (PDF) of the position and motion of the body, on stimuli similar to (Neri et al., 1998). Our results are consistent with the psychophysics indicating that our model is consistent with human motion perception, accounting for both biological motion and pure translation.
一种人体运动检测和方向识别的计算模型
观察生物运动对人类和计算机都非常重要。心理物理学实验表明,我们的视觉系统对生物运动检测和方向识别的能力不同于对简单翻译的能力。现有的运动知觉定量模型无法解释这些发现。我们提出了一个计算模型,它使用基于身体位置和运动的联合概率密度函数(PDF)的学习和统计推断,类似于(Neri et al., 1998)的刺激。我们的结果与心理物理学一致,表明我们的模型与人类运动感知一致,考虑了生物运动和纯翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信