Prediction of the Navigation Angles Using Random Forest Algorithm and Real Flight Data of UAVs

Huda Naji Al-sudany, B. Lantos
{"title":"Prediction of the Navigation Angles Using Random Forest Algorithm and Real Flight Data of UAVs","authors":"Huda Naji Al-sudany, B. Lantos","doi":"10.1109/SISY56759.2022.10036286","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are becoming more common in aviation. Predicting and estimating of UAV attitude are important aspects of the communication strategy. Autonomous UAVs' attitude estimate is a crucial component for controlling in flight mission. The attitude can take many forms such as Euler angles and Quaternion. This paper explains attitude estimation of UAV using Random Forest (RF) algorithm based on real flight data of Accelerations, Angular velocity, Magnetic Field, and GPS measurements for prediction current attitude angles (roll, pitch and yaw). The developed algorithm uses features that are derives from sensors measurements. The developed RF model results showed accurate prediction of UAVs attitude angles with small error values.","PeriodicalId":337909,"journal":{"name":"2022 IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics (SISY)","volume":"123 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY56759.2022.10036286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) are becoming more common in aviation. Predicting and estimating of UAV attitude are important aspects of the communication strategy. Autonomous UAVs' attitude estimate is a crucial component for controlling in flight mission. The attitude can take many forms such as Euler angles and Quaternion. This paper explains attitude estimation of UAV using Random Forest (RF) algorithm based on real flight data of Accelerations, Angular velocity, Magnetic Field, and GPS measurements for prediction current attitude angles (roll, pitch and yaw). The developed algorithm uses features that are derives from sensors measurements. The developed RF model results showed accurate prediction of UAVs attitude angles with small error values.
基于无人机真实飞行数据的随机森林导航角预测
无人驾驶飞行器(uav)在航空领域变得越来越普遍。无人机姿态的预测和估计是通信策略的一个重要方面。自主无人机的姿态估计是控制无人机飞行任务的重要组成部分。姿态可以采用欧拉角和四元数等多种形式。本文介绍了利用随机森林(Random Forest, RF)算法对无人机进行姿态估计,该算法基于实际飞行数据的加速度、角速度、磁场和GPS测量值来预测当前姿态角(横摇、俯仰和偏航)。开发的算法使用来自传感器测量的特征。所建立的射频模型预测精度高,误差小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信