Improving the Template Generation for Chinese Character Error Detection with Confusion Sets

Yong-Zhi Chen, Shih-Hung Wu, Ping-Che Yang, Tsun Ku
{"title":"Improving the Template Generation for Chinese Character Error Detection with Confusion Sets","authors":"Yong-Zhi Chen, Shih-Hung Wu, Ping-Che Yang, Tsun Ku","doi":"10.30019/IJCLCLP.201006.0003","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system that automatically generates templates for detecting Chinese character errors. We first collect the confusion sets for each high-frequency Chinese character. Error types include pronunciation-related errors and radical-related errors. With the help of the confusion sets, our system generates possible error patterns in context, which will be used as detection templates. Combined with a word segmentation module, our system generates more accurate templates. The experimental results show the precision of performance approaches 95%. Such a system should not only help teachers grade and check student essays, but also effectively help students learn how to write.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.201006.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a system that automatically generates templates for detecting Chinese character errors. We first collect the confusion sets for each high-frequency Chinese character. Error types include pronunciation-related errors and radical-related errors. With the help of the confusion sets, our system generates possible error patterns in context, which will be used as detection templates. Combined with a word segmentation module, our system generates more accurate templates. The experimental results show the precision of performance approaches 95%. Such a system should not only help teachers grade and check student essays, but also effectively help students learn how to write.
基于混淆集的汉字错误检测模板生成改进
本文提出了一种自动生成汉字错误检测模板的系统。我们首先收集每个高频汉字的混淆集。错误类型包括与发音相关的错误和与词根相关的错误。在混淆集的帮助下,我们的系统在上下文中生成可能的错误模式,这些模式将用作检测模板。结合分词模块,我们的系统生成更准确的模板。实验结果表明,该算法的精度接近95%。这样的系统不仅可以帮助教师评分和检查学生的文章,还可以有效地帮助学生学习如何写作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信