On the rigidity part of Schwarz Lemma

T. Akyel, B. Örnek
{"title":"On the rigidity part of Schwarz Lemma","authors":"T. Akyel, B. Örnek","doi":"10.1063/1.5136123","DOIUrl":null,"url":null,"abstract":"We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and |ℜf(z)| <1 for |z| < 1. We generalize the rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S. Krantz and D. Chelst, we present some more general results in which the bilogaritmic concave majorants are used. The strategy of these results relies on a special version of Phragmen-Lindelof princible and Harnack inequality.","PeriodicalId":175596,"journal":{"name":"THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5136123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and |ℜf(z)| <1 for |z| < 1. We generalize the rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S. Krantz and D. Chelst, we present some more general results in which the bilogaritmic concave majorants are used. The strategy of these results relies on a special version of Phragmen-Lindelof princible and Harnack inequality.
论Schwarz引理的刚性部分
我们考虑Schwarz引理的刚性部分。设f是单位圆盘D上的全纯函数,且对于|z| <1, f(z)| <1。推广了全纯函数的刚性,给出了f在有限边界点集附近的局部行为是有限Blaschke积的充分条件。对于D. Burns-S的刚性定理的另一个版本。Krantz和D. Chelst,我们提出了一些更一般的结果,其中使用了双几何凹主形。这些结果的策略依赖于Phragmen-Lindelof原理和Harnack不等式的一个特殊版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信