Distributed information-theoretic biclustering of two memoryless sources

Georg Pichler, P. Piantanida, G. Matz
{"title":"Distributed information-theoretic biclustering of two memoryless sources","authors":"Georg Pichler, P. Piantanida, G. Matz","doi":"10.1109/ALLERTON.2015.7447035","DOIUrl":null,"url":null,"abstract":"A novel multi-terminal source coding problem motivated by biclustering applications is investigated. In this setting, two separate encoders observe two dependent memoryless processes X<sup>n</sup> and Z<sup>n</sup>, respectively. The encoders' goal is to find rate-limited functions f(X<sup>n</sup>) and g(Z<sup>n</sup>) that maximize asymptotically the mutual information I(f(X<sup>n</sup>); g(Z<sup>n</sup>)) ≥ nμ. We derive non-trivial inner and outer bounds on the optimal characterization of the achievable rates for this problem. Applications also arise in the context of distributed hypothesis testing against independence under communication constraints.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A novel multi-terminal source coding problem motivated by biclustering applications is investigated. In this setting, two separate encoders observe two dependent memoryless processes Xn and Zn, respectively. The encoders' goal is to find rate-limited functions f(Xn) and g(Zn) that maximize asymptotically the mutual information I(f(Xn); g(Zn)) ≥ nμ. We derive non-trivial inner and outer bounds on the optimal characterization of the achievable rates for this problem. Applications also arise in the context of distributed hypothesis testing against independence under communication constraints.
两个无内存源的分布式信息论双聚类
研究了一种由双聚类应用驱动的新型多终端源编码问题。在此设置中,两个独立的编码器分别观察两个相关的无内存进程Xn和Zn。编码器的目标是找到速率限制函数f(Xn)和g(Zn),使互信息I(f(Xn))渐近最大化;g(Zn))≥nμ。我们导出了该问题可达率最优表征的非平凡内界和外界。应用程序还出现在通信约束下针对独立性的分布式假设检验的上下文中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信