Activity Recognition from Video Data Using Spatial and Temporal Features

M. Al-Wattar, R. Khusainov, D. Azzi, J. Chiverton
{"title":"Activity Recognition from Video Data Using Spatial and Temporal Features","authors":"M. Al-Wattar, R. Khusainov, D. Azzi, J. Chiverton","doi":"10.1109/IE.2016.57","DOIUrl":null,"url":null,"abstract":"A method to monitor elderly people in an indoor environment using conventional cameras is presented. The method can be used to identify people's activities and initiate suitable actions as needed. The originality of our approach is in combining spatial and temporal contexts with the position and orientation for the detected person. Preliminary evaluation, based only on the first two features (spatial and temporal), achieved the accuracy over 60% in a realistic residential environment. Although the results are based on using only two out of the four proposed input features, they already demonstrate a promising improvement over using a single feature in isolation.","PeriodicalId":425456,"journal":{"name":"2016 12th International Conference on Intelligent Environments (IE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Intelligent Environments (IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2016.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A method to monitor elderly people in an indoor environment using conventional cameras is presented. The method can be used to identify people's activities and initiate suitable actions as needed. The originality of our approach is in combining spatial and temporal contexts with the position and orientation for the detected person. Preliminary evaluation, based only on the first two features (spatial and temporal), achieved the accuracy over 60% in a realistic residential environment. Although the results are based on using only two out of the four proposed input features, they already demonstrate a promising improvement over using a single feature in isolation.
利用空间和时间特征识别视频数据中的活动
提出了一种利用传统摄像机在室内环境中监测老年人的方法。该方法可用于识别人员的活动,并根据需要发起适当的行动。我们的方法的独创性在于将空间和时间背景与被检测人员的位置和方向相结合。初步评估仅基于前两个特征(空间和时间),在现实的居住环境中实现了超过60%的准确率。虽然结果是基于仅使用四个建议输入特征中的两个,但它们已经证明了比孤立使用单个特征有希望的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信