Multivariate spectral reconstruction of stap covariance matrices: Toeplitz-block solution

Y. Abramovich, B.A. Johnson, N. Spencer
{"title":"Multivariate spectral reconstruction of stap covariance matrices: Toeplitz-block solution","authors":"Y. Abramovich, B.A. Johnson, N. Spencer","doi":"10.1109/SAM.2008.4606861","DOIUrl":null,"url":null,"abstract":"In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter covariance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper and a companion one [1] addresses the issue of STAP filter performance from covariance matrices reconstructed with a strict adherence to the Toeplitz-block structure versus a ldquorelaxedrdquo reconstruction which employs a maximum entropy completion criteria, but does not enforce a strict Toeplitz-block structure on that completion. Both techniques analyzed use a multivariate spectral reconstruction approach which preserve the Burg spectrum. In this paper, the reconstruction is constrained to result in a Toeplitz-block covariance matrix model, and the solution requires positive definite matrix-valued stable polynomial factorization that can be derived via the multivariate Levinson algorithm. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset in the companion paper.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In space-time adaptive processing (STAP) applications, temporally stationary clutter results in a Toeplitz-block clutter covariance matrix. In the reduced-order parametric matched filter STAP technique, this covariance matrix is reconstructed from a small number of estimated parameters, resulting in a much more efficient use of training samples. This paper and a companion one [1] addresses the issue of STAP filter performance from covariance matrices reconstructed with a strict adherence to the Toeplitz-block structure versus a ldquorelaxedrdquo reconstruction which employs a maximum entropy completion criteria, but does not enforce a strict Toeplitz-block structure on that completion. Both techniques analyzed use a multivariate spectral reconstruction approach which preserve the Burg spectrum. In this paper, the reconstruction is constrained to result in a Toeplitz-block covariance matrix model, and the solution requires positive definite matrix-valued stable polynomial factorization that can be derived via the multivariate Levinson algorithm. Performance of the reconstructed covariance matrix model as a STAP filter is evaluated using the DARPA KASSPER dataset in the companion paper.
stap协方差矩阵的多元谱重构:toeplitz块解
在时空自适应处理(STAP)应用中,时间平稳杂波会产生toeplitz块杂波协方差矩阵。在降阶参数匹配滤波器STAP技术中,该协方差矩阵由少量估计参数重构,从而更有效地利用训练样本。本文和另一篇论文[1]解决了严格遵守Toeplitz-block结构重构协方差矩阵的STAP滤波器性能问题,而ldquorelaxedrdquo重构采用最大熵补全标准,但没有在补全上强制执行严格的Toeplitz-block结构。这两种技术分析使用多元光谱重建方法,保留伯格光谱。在本文中,重构被约束为Toeplitz-block协方差矩阵模型,求解需要正定的矩阵值稳定多项式分解,该分解可通过多元Levinson算法导出。本文利用DARPA KASSPER数据集对重构协方差矩阵模型作为STAP滤波器的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信