Modularized and Contract-Based Prediction Models in Programmable Networks

Michel Neves, Andre Riker, J. Nobre, A. Abelém, B. Dalmazo
{"title":"Modularized and Contract-Based Prediction Models in Programmable Networks","authors":"Michel Neves, Andre Riker, J. Nobre, A. Abelém, B. Dalmazo","doi":"10.1109/NCA57778.2022.10013517","DOIUrl":null,"url":null,"abstract":"Network traffic engineering aims at the network quality, optimizing routes and detecting network attacks. In this context, traffic prediction is an essential tool to capture the underlying behavior of a network. Therefore, this work proposes a modularization architecture for volumetric prediction models, allowing switching between models and setups at runtime in controllers of Software Defined Networks (SDN), dealing with short time series and delivering the data already processed for the prediction. The proposed architecture compares the results from four traditional predictors based on short-range time dependency.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Network traffic engineering aims at the network quality, optimizing routes and detecting network attacks. In this context, traffic prediction is an essential tool to capture the underlying behavior of a network. Therefore, this work proposes a modularization architecture for volumetric prediction models, allowing switching between models and setups at runtime in controllers of Software Defined Networks (SDN), dealing with short time series and delivering the data already processed for the prediction. The proposed architecture compares the results from four traditional predictors based on short-range time dependency.
可编程网络中的模块化和基于契约的预测模型
网络流量工程旨在提高网络质量,优化路由,检测网络攻击。在这种情况下,流量预测是捕获网络底层行为的基本工具。因此,这项工作提出了体积预测模型的模块化架构,允许在软件定义网络(SDN)控制器的运行时在模型和设置之间切换,处理短时间序列并提供已经为预测处理过的数据。提出的体系结构比较了基于短期时间依赖性的四种传统预测器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信