Unsatisfiable systems of equations, over a finite field

Alan R. Woods
{"title":"Unsatisfiable systems of equations, over a finite field","authors":"Alan R. Woods","doi":"10.1109/SFCS.1998.743444","DOIUrl":null,"url":null,"abstract":"The properties of any system of k simultaneous equations in n variables over GF(q), are studied, with a particular emphasis on unsatisfiable systems. A general formula for the number of solutions is given, which can actually be useful for computing that number in the special case where all the equations are of degree 2. When such a quadratic system has no solution, there is always a proof of unsatisfiability of size q/sup n/2/ times a polynomial in n and q, which can be checked deterministically in time satisfying a similar bound. Such a proof can be found by a probabilistic algorithm in time asymptotic to that required to test, by substitution in k quadratic equations, all q/sup n/ potential solutions.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The properties of any system of k simultaneous equations in n variables over GF(q), are studied, with a particular emphasis on unsatisfiable systems. A general formula for the number of solutions is given, which can actually be useful for computing that number in the special case where all the equations are of degree 2. When such a quadratic system has no solution, there is always a proof of unsatisfiability of size q/sup n/2/ times a polynomial in n and q, which can be checked deterministically in time satisfying a similar bound. Such a proof can be found by a probabilistic algorithm in time asymptotic to that required to test, by substitution in k quadratic equations, all q/sup n/ potential solutions.
有限域上的不可满足方程组
研究GF(q)上任意n变量k联立方程组的性质,特别着重于不可满足方程组。给出了解数的一般公式,在所有方程都是2次的特殊情况下,它实际上对计算解数很有用。当这样的二次系统无解时,总有一个大小为q/sup n/2/乘以n和q的多项式的不满足性证明,该证明可以在满足相似界的时间上被确定性地检验。这样的证明可以通过概率算法在时间渐近的情况下找到,通过替换k个二次方程,所有q/sup n/潜在解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信