Closed-loop identification using canonical correlation analysis

C. T. Chou, M. Verhaegen
{"title":"Closed-loop identification using canonical correlation analysis","authors":"C. T. Chou, M. Verhaegen","doi":"10.23919/ECC.1999.7099320","DOIUrl":null,"url":null,"abstract":"We consider the identification of linear state space innovations model from closed-loop data. We suggest to use the subspace closed-loop identification algorithm of [3] to obtain an initial estimate of the deterministic part of the system and then plug this estimate into the second stage of the 2CCA algorithm of Peternell et. al. [9]. The main result of this paper is to show that given closed-loop data and consistent estimates of a number of Markov parameters of the deterministic part of the system, the second stage of the 2CCA algorithm delivers consistent estimates of the system matrices of the innovations model.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We consider the identification of linear state space innovations model from closed-loop data. We suggest to use the subspace closed-loop identification algorithm of [3] to obtain an initial estimate of the deterministic part of the system and then plug this estimate into the second stage of the 2CCA algorithm of Peternell et. al. [9]. The main result of this paper is to show that given closed-loop data and consistent estimates of a number of Markov parameters of the deterministic part of the system, the second stage of the 2CCA algorithm delivers consistent estimates of the system matrices of the innovations model.
应用典型相关分析进行闭环辨识
研究了基于闭环数据的线性状态空间创新模型的辨识问题。我们建议使用[3]的子空间闭环辨识算法来获得系统确定性部分的初始估计,然后将该估计代入Peternell等人[9]的2CCA算法的第二阶段。本文的主要结果是表明,给定闭环数据和系统确定性部分的一些马尔可夫参数的一致估计,2CCA算法的第二阶段提供了创新模型的系统矩阵的一致估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信