SGD-SM: Generating Seamless Global Daily AMSR2 Soil Moisture Long-term Products (2013-2019)

Qiang Zhang, Q. Yuan, Jie Li, Yuanhong Wang, Fujun Sun, Liangpei Zhang
{"title":"SGD-SM: Generating Seamless Global Daily AMSR2 Soil Moisture Long-term Products (2013-2019)","authors":"Qiang Zhang, Q. Yuan, Jie Li, Yuanhong Wang, Fujun Sun, Liangpei Zhang","doi":"10.5281/ZENODO.3960425","DOIUrl":null,"url":null,"abstract":"Abstract. High quality and long-term soil moisture productions are significant for hydrologic monitoring and agricultural management. However, the acquired daily soil moisture productions are incomplete in global land (just about 30 %∼80 % coverage ratio), due to the satellite orbit coverage and the limitations of soil moisture retrieving algorithms. To solve this inevitable problem, we develop a novel 3D spatio-temporal partial convolutional neural network (CNN) for Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture productions gap-filling. Through the proposed framework, we generate the seamless global daily (SGD) AMSR2 soil moisture long-term productions from 2013 to 2019. To further validate the effectiveness of these productions, three verification ways are employed as follow: 1) In-situ validation; 2) Time-series validation; And 3) simulated missing regions validation. Results show that the seamless global daily soil moisture productions have reliable cooperativity with the selected in-situ values. The evaluation indexes of the reconstructed (original) dataset are R: 0.683 (0.687), RMSE: 0.099 m3/m3 (0.095 m3/m3), and MAE: 0.081 m3/m3 (0.078 m3/m3), respectively. Temporal consistency of the reconstructed daily soil moisture productions is ensured with the original time-series distribution of valid values. Besides, the spatial continuity of the reconstructed regions is also accorded with the context information (R: 0.963∼0.974, RMSE: 0.065∼0.073 m3/m3, and MAE: 0.044∼0.052 m3/m3). More details of this work are released at https://qzhang95.github.io/Projects/Global-Daily-Seamless-AMSR2/ . This dataset can be downloaded at https://zenodo.org/record/3960425 (Zhang et al., 2020. DOI: https://doi.org/10.5281/zenodo.3960425 ).","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.3960425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. High quality and long-term soil moisture productions are significant for hydrologic monitoring and agricultural management. However, the acquired daily soil moisture productions are incomplete in global land (just about 30 %∼80 % coverage ratio), due to the satellite orbit coverage and the limitations of soil moisture retrieving algorithms. To solve this inevitable problem, we develop a novel 3D spatio-temporal partial convolutional neural network (CNN) for Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture productions gap-filling. Through the proposed framework, we generate the seamless global daily (SGD) AMSR2 soil moisture long-term productions from 2013 to 2019. To further validate the effectiveness of these productions, three verification ways are employed as follow: 1) In-situ validation; 2) Time-series validation; And 3) simulated missing regions validation. Results show that the seamless global daily soil moisture productions have reliable cooperativity with the selected in-situ values. The evaluation indexes of the reconstructed (original) dataset are R: 0.683 (0.687), RMSE: 0.099 m3/m3 (0.095 m3/m3), and MAE: 0.081 m3/m3 (0.078 m3/m3), respectively. Temporal consistency of the reconstructed daily soil moisture productions is ensured with the original time-series distribution of valid values. Besides, the spatial continuity of the reconstructed regions is also accorded with the context information (R: 0.963∼0.974, RMSE: 0.065∼0.073 m3/m3, and MAE: 0.044∼0.052 m3/m3). More details of this work are released at https://qzhang95.github.io/Projects/Global-Daily-Seamless-AMSR2/ . This dataset can be downloaded at https://zenodo.org/record/3960425 (Zhang et al., 2020. DOI: https://doi.org/10.5281/zenodo.3960425 ).
SGD-SM:生成无缝全球每日AMSR2土壤水分长期产品(2013-2019)
摘要高质量和长期的土壤水分生产对水文监测和农业管理具有重要意义。然而,由于卫星轨道覆盖和土壤湿度检索算法的限制,在全球土地上获得的日土壤湿度产品是不完整的(仅约30% ~ 80%的覆盖率)。为了解决这一不可避免的问题,我们开发了一种新的三维时空部分卷积神经网络(CNN),用于高级微波扫描辐射计2 (AMSR2)土壤水分生产间隙填充。通过提出的框架,我们生成了2013年至2019年无缝全球每日(SGD) AMSR2土壤湿度的长期生产。为了进一步验证这些产品的有效性,采用了以下三种验证方式:1)现场验证;2)时间序列验证;3)模拟缺失区域验证。结果表明,无缝全球日土壤水分产生量与选定的原位值具有可靠的协同性。重建(原始)数据集的评价指标分别为R: 0.683 (0.687), RMSE: 0.099 m3/m3 (0.095 m3/m3), MAE: 0.081 m3/m3 (0.078 m3/m3)。重建的日土壤湿度产品在时间上与原始有效值的时间序列分布保持一致。此外,重建区域的空间连续性也符合上下文信息(R: 0.963 ~ 0.974, RMSE: 0.065 ~ 0.073 m3/m3, MAE: 0.044 ~ 0.052 m3/m3)。这项工作的更多细节发布在https://qzhang95.github.io/Projects/Global-Daily-Seamless-AMSR2/。该数据集可从https://zenodo.org/record/3960425下载(Zhang et al., 2020)。DOI: https://doi.org/10.5281/zenodo.3960425)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信