Video Summarization: How to Use Deep-Learned Features Without a Large-Scale Dataset

Didik Purwanto, Yie-Tarng Chen, Wen-Hsien Fang, Wen-Chi Wu
{"title":"Video Summarization: How to Use Deep-Learned Features Without a Large-Scale Dataset","authors":"Didik Purwanto, Yie-Tarng Chen, Wen-Hsien Fang, Wen-Chi Wu","doi":"10.29007/21Q3","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework incorporating deep-learned features with the conventional machine learning models within which the objective function is optimized by using quadratic programming or quasi-Newton methods instead of an end-to-end deep learning approach which uses variants of stochastic gradient descent algorithms. A temporal segmentation algorithm is first scrutinized by using a learning to rank scheme to detect the abrupt changes of frame appearances in a video sequence. Afterward, a peak-searching algorithm, statisticssensitive non-linear iterative peak-clipping (SNIP), is employed to acquire the local maxima of the filtered video sequence after rank pooling, where each of the local maxima corresponds to a key frame in the video. Simulations show that the new approach outperforms the main state-of-the-art works on four public video datasets.","PeriodicalId":277939,"journal":{"name":"2018 9th International Conference on Awareness Science and Technology (iCAST)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/21Q3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a framework incorporating deep-learned features with the conventional machine learning models within which the objective function is optimized by using quadratic programming or quasi-Newton methods instead of an end-to-end deep learning approach which uses variants of stochastic gradient descent algorithms. A temporal segmentation algorithm is first scrutinized by using a learning to rank scheme to detect the abrupt changes of frame appearances in a video sequence. Afterward, a peak-searching algorithm, statisticssensitive non-linear iterative peak-clipping (SNIP), is employed to acquire the local maxima of the filtered video sequence after rank pooling, where each of the local maxima corresponds to a key frame in the video. Simulations show that the new approach outperforms the main state-of-the-art works on four public video datasets.
视频摘要:如何在没有大规模数据集的情况下使用深度学习的特征
本文提出了一个将深度学习特征与传统机器学习模型相结合的框架,其中目标函数通过使用二次规划或准牛顿方法进行优化,而不是使用随机梯度下降算法变体的端到端深度学习方法。首先研究了一种时间分割算法,采用学习排序方法检测视频序列中帧外观的突变。然后,采用峰值搜索算法统计敏感非线性迭代峰值裁剪(SNIP),在秩池化后获取滤波后的视频序列的局部最大值,其中每个局部最大值对应视频中的一个关键帧。仿真结果表明,该方法在四个公共视频数据集上的性能优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信