Topological Data Analysis for Discourse Semantics?

Ketki Savle, Wlodek Zadrozny, Minwoo Lee
{"title":"Topological Data Analysis for Discourse Semantics?","authors":"Ketki Savle, Wlodek Zadrozny, Minwoo Lee","doi":"10.18653/v1/W19-0605","DOIUrl":null,"url":null,"abstract":"In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics: computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions.","PeriodicalId":171876,"journal":{"name":"Proceedings of the 13th International Conference on Computational Semantics - Student Papers","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Computational Semantics - Student Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-0605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics: computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions.
语篇语义的拓扑数据分析?
本文提出了将拓扑数据分析应用于语篇结构的新结果。我们展示了从句子之间的关系中提取的拓扑信息可以用于推理,即它可以应用于COLIEE 2018数据集中给出的非常困难的法律蕴涵。Doshi和Zadrozny(2018)以及Gholizadeh等人(2018)的先前结果表明,拓扑特征对分类很有用。计算拓扑在蕴涵中的应用在我们看来是新颖的,为话语语义提供了一套新的工具:计算拓扑也许可以在逻辑的脆弱性和神经网络的回归之间提供一座桥梁。讨论了使用拓扑信息的优缺点,以及分类器决策的可解释性等开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信