EEG Classification for Motor Imagery Mental Tasks Using Wavelet Signal Denoising

Ivaylo Ivaylov, Milena Lazarova, A. Manolova
{"title":"EEG Classification for Motor Imagery Mental Tasks Using Wavelet Signal Denoising","authors":"Ivaylo Ivaylov, Milena Lazarova, A. Manolova","doi":"10.1109/TELECOM50385.2020.9299532","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interfaces (BCIs) are an approach that enables humans to interact with their surroundings by brain generated control signals. Electroencephalographic (EEG) signals that records electrical activity through the scalp might contain superfluous artifacts suppressing some valuable information. Thus the EEG signal denoising is an important stage of the EEG data analyses. The paper presents an experimental comparison of several classification approaches for 2-class motor imagery EEG data classification and explores the influence of wavelet signal denoising on the classification accuracy.","PeriodicalId":300010,"journal":{"name":"2020 28th National Conference with International Participation (TELECOM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM50385.2020.9299532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Brain-Computer Interfaces (BCIs) are an approach that enables humans to interact with their surroundings by brain generated control signals. Electroencephalographic (EEG) signals that records electrical activity through the scalp might contain superfluous artifacts suppressing some valuable information. Thus the EEG signal denoising is an important stage of the EEG data analyses. The paper presents an experimental comparison of several classification approaches for 2-class motor imagery EEG data classification and explores the influence of wavelet signal denoising on the classification accuracy.
基于小波信号去噪的运动意象心理任务脑电分类
脑机接口(bci)是一种通过大脑产生的控制信号使人类与周围环境互动的方法。通过头皮记录电活动的脑电图(EEG)信号可能包含多余的伪影,从而抑制了一些有价值的信息。因此,脑电信号去噪是脑电信号数据分析的一个重要环节。本文对两类运动意象脑电数据分类的几种分类方法进行了实验比较,探讨了小波信号去噪对分类精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信