Inferring Human Activity Using Wearable Sensors

S. Chawathe
{"title":"Inferring Human Activity Using Wearable Sensors","authors":"S. Chawathe","doi":"10.1109/uemcon53757.2021.9666707","DOIUrl":null,"url":null,"abstract":"This paper presents methods that use data from wearable sensors, such as those found in low-cost commodity hardware, to infer the human activity (such as reading or walking) corresponding to the sensor readings. A related task is the identification of individuals based on the same data. The classification accuracy of the methods used in this work is higher than earlier work using the same dataset. Further, a significant reduction in the number of sensor data streams produces only a very small impact on this accuracy, which is a feature of practical significance due to implications for network bandwidth and energy budgets in such systems.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents methods that use data from wearable sensors, such as those found in low-cost commodity hardware, to infer the human activity (such as reading or walking) corresponding to the sensor readings. A related task is the identification of individuals based on the same data. The classification accuracy of the methods used in this work is higher than earlier work using the same dataset. Further, a significant reduction in the number of sensor data streams produces only a very small impact on this accuracy, which is a feature of practical significance due to implications for network bandwidth and energy budgets in such systems.
利用可穿戴传感器推断人类活动
本文介绍了使用来自可穿戴传感器(例如在低成本商品硬件中发现的传感器)的数据来推断与传感器读数相对应的人类活动(例如阅读或行走)的方法。一个相关的任务是基于相同的数据识别个体。本工作中使用的方法的分类精度高于使用相同数据集的早期工作。此外,传感器数据流数量的显著减少只会对这种精度产生非常小的影响,这是一个具有实际意义的特征,因为这类系统中的网络带宽和能量预算会受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信