{"title":"An analysis of choice functions for Fuzzy ART using grammatical evolution","authors":"Mia Gerber, N. Pillay","doi":"10.1145/3583133.3590554","DOIUrl":null,"url":null,"abstract":"The Fuzzy Adaptive Resonance Theory (ART) algorithm is effective for unsupervised clustering. The Fuzzy ART choice function is an integral part of the Fuzzy ART algorithm. One of the challenges is that different choice functions are effective for different datasets. This work evolves the choice function using GE. The study compares the evolved choice functions to manually created choice functions. This study compares two different grammars for the GE, a basic grammar that includes only functions from the Fuzzy ART algorithm and an extended grammar that includes additional functions. This work also compares different fitness functions for GE. Analysis is done using ten UCI benchmark datasets and three real-world sentiment analysis datasets, it is found that the evolved functions using the extended grammar perform better than the manually created functions. The best fitness function to use for the GE is dataset dependent.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Fuzzy Adaptive Resonance Theory (ART) algorithm is effective for unsupervised clustering. The Fuzzy ART choice function is an integral part of the Fuzzy ART algorithm. One of the challenges is that different choice functions are effective for different datasets. This work evolves the choice function using GE. The study compares the evolved choice functions to manually created choice functions. This study compares two different grammars for the GE, a basic grammar that includes only functions from the Fuzzy ART algorithm and an extended grammar that includes additional functions. This work also compares different fitness functions for GE. Analysis is done using ten UCI benchmark datasets and three real-world sentiment analysis datasets, it is found that the evolved functions using the extended grammar perform better than the manually created functions. The best fitness function to use for the GE is dataset dependent.