An analysis of choice functions for Fuzzy ART using grammatical evolution

Mia Gerber, N. Pillay
{"title":"An analysis of choice functions for Fuzzy ART using grammatical evolution","authors":"Mia Gerber, N. Pillay","doi":"10.1145/3583133.3590554","DOIUrl":null,"url":null,"abstract":"The Fuzzy Adaptive Resonance Theory (ART) algorithm is effective for unsupervised clustering. The Fuzzy ART choice function is an integral part of the Fuzzy ART algorithm. One of the challenges is that different choice functions are effective for different datasets. This work evolves the choice function using GE. The study compares the evolved choice functions to manually created choice functions. This study compares two different grammars for the GE, a basic grammar that includes only functions from the Fuzzy ART algorithm and an extended grammar that includes additional functions. This work also compares different fitness functions for GE. Analysis is done using ten UCI benchmark datasets and three real-world sentiment analysis datasets, it is found that the evolved functions using the extended grammar perform better than the manually created functions. The best fitness function to use for the GE is dataset dependent.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fuzzy Adaptive Resonance Theory (ART) algorithm is effective for unsupervised clustering. The Fuzzy ART choice function is an integral part of the Fuzzy ART algorithm. One of the challenges is that different choice functions are effective for different datasets. This work evolves the choice function using GE. The study compares the evolved choice functions to manually created choice functions. This study compares two different grammars for the GE, a basic grammar that includes only functions from the Fuzzy ART algorithm and an extended grammar that includes additional functions. This work also compares different fitness functions for GE. Analysis is done using ten UCI benchmark datasets and three real-world sentiment analysis datasets, it is found that the evolved functions using the extended grammar perform better than the manually created functions. The best fitness function to use for the GE is dataset dependent.
基于语法演化的模糊ART选择函数分析
模糊自适应共振(ART)算法是一种有效的无监督聚类算法。模糊ART选择函数是模糊ART算法的重要组成部分。其中一个挑战是不同的选择函数对不同的数据集有效。本工作利用GE对选择函数进行演化。该研究将进化的选择函数与人工创建的选择函数进行了比较。本研究比较了通用电气的两种不同语法,一种基本语法只包括模糊ART算法的功能,另一种扩展语法包括其他功能。本文还比较了GE的不同适应度函数。使用10个UCI基准数据集和3个真实情感分析数据集进行分析,发现使用扩展语法进化的函数比手动创建的函数性能更好。GE的最佳适应度函数是与数据集相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信