{"title":"Multi-view Manifold Learning for Media Interestingness Prediction","authors":"Yang Liu, Zhonglei Gu, Yiu-ming Cheung, K. Hua","doi":"10.1145/3078971.3079021","DOIUrl":null,"url":null,"abstract":"Media interestingness prediction plays an important role in many real-world applications and attracts much research attention recently. In this paper, we aim to investigate this problem from the perspective of supervised feature extraction. Specifically, we design a novel algorithm dubbed Multi-view Manifold Learning (M) to uncover the latent factors that are capable of distinguishing interesting media data from non-interesting ones. By modelling both geometry preserving criterion and discrimination maximization criterion in a unified framework, M2L learns a common subspace for data from multiple views. The analytical solution of M2L is obtained by solving a generalized eigen-decomposition problem. Experiments on the Predicting Media Interestingness Dataset validate the effectiveness of the proposed method.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"403 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Media interestingness prediction plays an important role in many real-world applications and attracts much research attention recently. In this paper, we aim to investigate this problem from the perspective of supervised feature extraction. Specifically, we design a novel algorithm dubbed Multi-view Manifold Learning (M) to uncover the latent factors that are capable of distinguishing interesting media data from non-interesting ones. By modelling both geometry preserving criterion and discrimination maximization criterion in a unified framework, M2L learns a common subspace for data from multiple views. The analytical solution of M2L is obtained by solving a generalized eigen-decomposition problem. Experiments on the Predicting Media Interestingness Dataset validate the effectiveness of the proposed method.