Multi-view Manifold Learning for Media Interestingness Prediction

Yang Liu, Zhonglei Gu, Yiu-ming Cheung, K. Hua
{"title":"Multi-view Manifold Learning for Media Interestingness Prediction","authors":"Yang Liu, Zhonglei Gu, Yiu-ming Cheung, K. Hua","doi":"10.1145/3078971.3079021","DOIUrl":null,"url":null,"abstract":"Media interestingness prediction plays an important role in many real-world applications and attracts much research attention recently. In this paper, we aim to investigate this problem from the perspective of supervised feature extraction. Specifically, we design a novel algorithm dubbed Multi-view Manifold Learning (M) to uncover the latent factors that are capable of distinguishing interesting media data from non-interesting ones. By modelling both geometry preserving criterion and discrimination maximization criterion in a unified framework, M2L learns a common subspace for data from multiple views. The analytical solution of M2L is obtained by solving a generalized eigen-decomposition problem. Experiments on the Predicting Media Interestingness Dataset validate the effectiveness of the proposed method.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"403 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Media interestingness prediction plays an important role in many real-world applications and attracts much research attention recently. In this paper, we aim to investigate this problem from the perspective of supervised feature extraction. Specifically, we design a novel algorithm dubbed Multi-view Manifold Learning (M) to uncover the latent factors that are capable of distinguishing interesting media data from non-interesting ones. By modelling both geometry preserving criterion and discrimination maximization criterion in a unified framework, M2L learns a common subspace for data from multiple views. The analytical solution of M2L is obtained by solving a generalized eigen-decomposition problem. Experiments on the Predicting Media Interestingness Dataset validate the effectiveness of the proposed method.
媒体兴趣预测的多视点流形学习
媒体兴趣度预测在许多现实应用中起着重要的作用,近年来备受关注。本文旨在从监督特征提取的角度研究这一问题。具体来说,我们设计了一种新的算法,称为多视图流形学习(M),以揭示能够区分有趣媒体数据和非有趣媒体数据的潜在因素。M2L通过在统一的框架中建模几何保持准则和判别最大化准则,为来自多个视图的数据学习公共子空间。通过求解一个广义特征分解问题,得到了M2L的解析解。在媒体兴趣度预测数据集上的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信