Nathan D. Davies, Yusra Farhat Ullah, Timothy M. Kowalewski
{"title":"A Framework for Objective Evaluation of Handheld Robotic Surgical Tools Against Patient Needs","authors":"Nathan D. Davies, Yusra Farhat Ullah, Timothy M. Kowalewski","doi":"10.1115/dmd2022-1039","DOIUrl":null,"url":null,"abstract":"\n Surgeons are human: their best possible performance is limited by their neurophysiology. What if an inoperable patient’s condition demands surgical treatment that exceeds such human performance limits? Can precision surgical robots help surgeons surpass such fundamental human neurophysiological limits? This article employs the Steering law to proposes a quantitative framework and benchmark tasks to evaluate the feasibility of a handheld surgical tool for meeting the quantified speed and accuracy requirements of a clinical need in non-contact interactions that exceed human limitations. Example use cases of such interactions in common surgical scenarios are presented. Preliminary results from a straight-line tracking task with and without computer assistance demonstrate the proposed framework in the context of falling short of a clinical speed/accuracy need. The framework is then used to articulate specifications for additional technology candidates to successfully exceed the speed and accuracy characteristics of the modality used.","PeriodicalId":236105,"journal":{"name":"2022 Design of Medical Devices Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2022-1039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Surgeons are human: their best possible performance is limited by their neurophysiology. What if an inoperable patient’s condition demands surgical treatment that exceeds such human performance limits? Can precision surgical robots help surgeons surpass such fundamental human neurophysiological limits? This article employs the Steering law to proposes a quantitative framework and benchmark tasks to evaluate the feasibility of a handheld surgical tool for meeting the quantified speed and accuracy requirements of a clinical need in non-contact interactions that exceed human limitations. Example use cases of such interactions in common surgical scenarios are presented. Preliminary results from a straight-line tracking task with and without computer assistance demonstrate the proposed framework in the context of falling short of a clinical speed/accuracy need. The framework is then used to articulate specifications for additional technology candidates to successfully exceed the speed and accuracy characteristics of the modality used.