Improving the Charge/Discharge Efficiency and Dielectric Breakdown in High Temperature Polymer Dielectrics

Xin Chen, Tian Zhang, Q. Zhang
{"title":"Improving the Charge/Discharge Efficiency and Dielectric Breakdown in High Temperature Polymer Dielectrics","authors":"Xin Chen, Tian Zhang, Q. Zhang","doi":"10.1109/CEIDP.2018.8544748","DOIUrl":null,"url":null,"abstract":"Dielectric polymers which can operate at high temperature (> 150 °C) and high electric fields with high performance such as high charge/discharge efficiency and dielectric strength are required for many capacitor applications including energy storage and electric insulators. These dielectric performances are controlled directly by charge injection and conduction at high fields and high temperature. Nanoparticles, through interfacial effects, can markedly influence dielectric properties of the matrix. Here we report a research on a significantly enhanced charge/discharge efficiency in high glass transition temperature polymer, i. e. polymers in PEEK family by doping with very small amount of nanoparticles. The presence of nanoparticles reduces the leakage current of the polymer matrix in the conditions of high electric field and high temperature. Our results demonstrate a practicable way to enhance the performance of polymer-based capacitors working at high temperature and high electric field.","PeriodicalId":377544,"journal":{"name":"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2018.8544748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric polymers which can operate at high temperature (> 150 °C) and high electric fields with high performance such as high charge/discharge efficiency and dielectric strength are required for many capacitor applications including energy storage and electric insulators. These dielectric performances are controlled directly by charge injection and conduction at high fields and high temperature. Nanoparticles, through interfacial effects, can markedly influence dielectric properties of the matrix. Here we report a research on a significantly enhanced charge/discharge efficiency in high glass transition temperature polymer, i. e. polymers in PEEK family by doping with very small amount of nanoparticles. The presence of nanoparticles reduces the leakage current of the polymer matrix in the conditions of high electric field and high temperature. Our results demonstrate a practicable way to enhance the performance of polymer-based capacitors working at high temperature and high electric field.
提高高温聚合物电介质的充放电效率和介质击穿
介电聚合物可以在高温(> 150°C)和高电场下工作,具有高性能,如高充放电效率和介电强度,是许多电容器应用(包括储能和电绝缘体)所需要的。这些介电性能是由高场高温下的电荷注入和传导直接控制的。纳米颗粒通过界面效应显著影响基体的介电性能。本文报道了在高玻璃化转变温度聚合物(即PEEK家族聚合物)中,通过掺杂极少量的纳米颗粒来显著提高充放电效率的研究。纳米粒子的存在降低了聚合物基体在高电场和高温条件下的泄漏电流。我们的研究结果为提高聚合物基电容器在高温高电场下的工作性能提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信