A branch and prune algorithm for the approximation of non-linear AE-solution sets

A. Goldsztejn
{"title":"A branch and prune algorithm for the approximation of non-linear AE-solution sets","authors":"A. Goldsztejn","doi":"10.1145/1141277.1141665","DOIUrl":null,"url":null,"abstract":"Non-linear AE-solution sets are a special case of parametric systems of equations where universally quantified parameters appear first. They allow to model many practical situations. A new branch and prune algorithm dedicated to the approximation of non-linear AE-solution sets is proposed. It is based on a new generalized interval (intervals whose bounds are not constrained to be ordered) parametric Hansen-Sengupta operator. In spite of some restrictions on the form of the AE-solution set which can be approximated, it allows to solve problems which were before out of reach of previous numerical methods. Some promising experimentations are presented.","PeriodicalId":269830,"journal":{"name":"Proceedings of the 2006 ACM symposium on Applied computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM symposium on Applied computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1141277.1141665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Non-linear AE-solution sets are a special case of parametric systems of equations where universally quantified parameters appear first. They allow to model many practical situations. A new branch and prune algorithm dedicated to the approximation of non-linear AE-solution sets is proposed. It is based on a new generalized interval (intervals whose bounds are not constrained to be ordered) parametric Hansen-Sengupta operator. In spite of some restrictions on the form of the AE-solution set which can be approximated, it allows to solve problems which were before out of reach of previous numerical methods. Some promising experimentations are presented.
非线性ae解集逼近的分支与剪枝算法
非线性ae -解集是首先出现普遍量化参数的参数方程组的一种特殊情况。它们可以模拟许多实际情况。针对非线性ae解集的逼近问题,提出了一种新的分支和剪枝算法。它基于一种新的广义区间(区间的边界不受有序约束)参数Hansen-Sengupta算子。尽管ae解集的近似形式有一些限制,但它可以解决以前的数值方法无法解决的问题。提出了一些有前景的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信