Sieve Inference on Semi-Nonparametric Time Series Models

Xiaohong Chen, Z. Liao, Yixiao Sun
{"title":"Sieve Inference on Semi-Nonparametric Time Series Models","authors":"Xiaohong Chen, Z. Liao, Yixiao Sun","doi":"10.2139/ssrn.2008720","DOIUrl":null,"url":null,"abstract":"The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a \"pre-asymptotic\" sieve variance estimator that captures temporal dependence. We construct a \"pre-asymptotic\" Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled \"pre-asymptotic\" Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled \"pre-asymptotic\" Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2008720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a "pre-asymptotic" sieve variance estimator that captures temporal dependence. We construct a "pre-asymptotic" Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled "pre-asymptotic" Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled "pre-asymptotic" Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.
半非参数时间序列模型的筛选推理
筛分法在半参数和非参数模型的估计中得到了广泛的应用。本文首先给出了半/非参数时间序列模型中可能不规则泛函的插入式筛子M估计的渐近正态性的一般理论。接下来,我们建立了一个令人惊讶的结果,即不规则(即比根t可估计的慢)泛函的插件筛M估计的渐近方差不依赖于时间依赖性。然而,忽略小样本的时间依赖性可能不会导致准确的推断。然后,我们提出了一个易于计算和更准确的推理过程,该过程基于捕获时间依赖性的“前渐近”筛方差估计器。我们使用正交序列长期方差(OS-LRV)估计量构造了一个“前渐近”Wald统计量。对于正则泛函(即根t可估计)和不规则泛函的sieve M估计量,当OS-LRV估计量的级数个数保持固定时,一个尺度的“预渐近”Wald统计量是渐近F分布的。模拟表明,我们的带有F临界值的缩放“预渐近”Wald检验在有限样本中比通常的带有卡方临界值的Wald检验具有更准确的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信