Learning from mistakes: towards a correctable learning algorithm

Karthik Raman, K. Svore, Ran Gilad-Bachrach, C. Burges
{"title":"Learning from mistakes: towards a correctable learning algorithm","authors":"Karthik Raman, K. Svore, Ran Gilad-Bachrach, C. Burges","doi":"10.1145/2396761.2398546","DOIUrl":null,"url":null,"abstract":"Many learning algorithms generate complex models that are difficult for a human to interpret, debug, and extend. In this paper, we address this challenge by proposing a new learning paradigm called correctable learning, where the learning algorithm receives external feedback about which data examples are incorrectly learned. We define a set of metrics which measure the correctability of a learning algorithm. We then propose a simple and efficient correctable learning algorithm which learns local models for different regions of the data space. Given an incorrect example, our method samples data in the neighborhood of that example and learns a new, more correct local model over that region. Experiments over multiple classification and ranking datasets show that our correctable learning algorithm offers significant improvements over the state-of-the-art techniques.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many learning algorithms generate complex models that are difficult for a human to interpret, debug, and extend. In this paper, we address this challenge by proposing a new learning paradigm called correctable learning, where the learning algorithm receives external feedback about which data examples are incorrectly learned. We define a set of metrics which measure the correctability of a learning algorithm. We then propose a simple and efficient correctable learning algorithm which learns local models for different regions of the data space. Given an incorrect example, our method samples data in the neighborhood of that example and learns a new, more correct local model over that region. Experiments over multiple classification and ranking datasets show that our correctable learning algorithm offers significant improvements over the state-of-the-art techniques.
从错误中学习:走向一个可纠正的学习算法
许多学习算法生成复杂的模型,人类很难解释、调试和扩展这些模型。在本文中,我们通过提出一种称为可纠正学习的新学习范式来解决这一挑战,其中学习算法接收关于哪些数据示例被错误学习的外部反馈。我们定义了一组度量学习算法的可纠正性的指标。然后,我们提出了一种简单有效的可校正学习算法,该算法可以学习数据空间不同区域的局部模型。给定一个错误的示例,我们的方法在该示例的邻域中采样数据,并在该区域上学习一个新的,更正确的局部模型。在多个分类和排名数据集上的实验表明,我们的可校正学习算法比最先进的技术有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信