Shobeir Fakhraei, H. Soltanian-Zadeh, F. Fotouhi, K. Elisevich
{"title":"Consensus Feature Ranking in Datasets with Missing Values","authors":"Shobeir Fakhraei, H. Soltanian-Zadeh, F. Fotouhi, K. Elisevich","doi":"10.1109/ICMLA.2010.117","DOIUrl":null,"url":null,"abstract":"Development of a feature ranking method based upon the discriminative power of features and unbiased towards classifiers is of interest. We have studied a consensus feature ranking method, based on multiple classifiers, and have shown its superiority to well known statistical ranking methods. In a target environment such as a medical dataset, missing values and an unbalanced distribution of data must be taken into consideration in the ranking and evaluation phases in order to legitimately apply a feature ranking method. In a comparison study, a Performance Index (PI) is proposed that takes into account both the number of features and the number of samples involved in the classification.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Development of a feature ranking method based upon the discriminative power of features and unbiased towards classifiers is of interest. We have studied a consensus feature ranking method, based on multiple classifiers, and have shown its superiority to well known statistical ranking methods. In a target environment such as a medical dataset, missing values and an unbalanced distribution of data must be taken into consideration in the ranking and evaluation phases in order to legitimately apply a feature ranking method. In a comparison study, a Performance Index (PI) is proposed that takes into account both the number of features and the number of samples involved in the classification.