Autonomous agent response learning by a multi-species particle swarm optimization

C. Chow, H. Tsui
{"title":"Autonomous agent response learning by a multi-species particle swarm optimization","authors":"C. Chow, H. Tsui","doi":"10.1109/CEC.2004.1330938","DOIUrl":null,"url":null,"abstract":"An autonomous agent response learning (AARL) algorithm is presented in this paper. We proposed to decompose the award function into a set of local award functions. By optimizing this objective function set, the response function with maximum award can be determined. To tackle the optimization problem, a modified particle swarm optimization (PSO) called \"multi-species PSO (MS-PSO)\" is introduced by considering each objective function as a specie swarm. Two sets of experiments are provided to illustrate the performance of MS-PSO. The results show that it returns a more accurate response set within shorter duration by comparing with other PSO methods.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

An autonomous agent response learning (AARL) algorithm is presented in this paper. We proposed to decompose the award function into a set of local award functions. By optimizing this objective function set, the response function with maximum award can be determined. To tackle the optimization problem, a modified particle swarm optimization (PSO) called "multi-species PSO (MS-PSO)" is introduced by considering each objective function as a specie swarm. Two sets of experiments are provided to illustrate the performance of MS-PSO. The results show that it returns a more accurate response set within shorter duration by comparing with other PSO methods.
基于多物种粒子群优化的自主智能体响应学习
提出了一种自主智能体响应学习(AARL)算法。我们提出将奖励函数分解为一组局部奖励函数。通过对目标函数集进行优化,可以确定奖励最大的响应函数。为了解决这一优化问题,引入了一种改进的粒子群算法——多物种粒子群算法(MS-PSO),将每个目标函数视为一个物种群。给出了两组实验来说明MS-PSO的性能。结果表明,与其他粒子群算法相比,该算法能在更短的时间内获得更精确的响应集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信