Selective monitoring using performance metric predicates

C. E. Fineman, P. Hontalas
{"title":"Selective monitoring using performance metric predicates","authors":"C. E. Fineman, P. Hontalas","doi":"10.1109/SHPCC.1992.232655","DOIUrl":null,"url":null,"abstract":"The field of parallel processing is going through an important evolution in technology characterized by a significant increase in the number of processors within such systems. As the number of processors increases, the conventional techniques for monitoring the performance of parallel systems will produce large amounts of data in the form of event trace files. The authors propose one possible solution to this data size problem: performance metric predicates. These predicates permit the user to define performance parameters that control the output of event trace data during the application's execution time. The authors assert that the use of performance metric predicates provides a powerful and useful tool for the control of event trace data output from large, complex systems.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The field of parallel processing is going through an important evolution in technology characterized by a significant increase in the number of processors within such systems. As the number of processors increases, the conventional techniques for monitoring the performance of parallel systems will produce large amounts of data in the form of event trace files. The authors propose one possible solution to this data size problem: performance metric predicates. These predicates permit the user to define performance parameters that control the output of event trace data during the application's execution time. The authors assert that the use of performance metric predicates provides a powerful and useful tool for the control of event trace data output from large, complex systems.<>
使用性能度量谓词的选择性监视
并行处理领域正在经历一个重要的技术演变,其特点是这种系统中的处理器数量显著增加。随着处理器数量的增加,用于监视并行系统性能的传统技术将以事件跟踪文件的形式产生大量数据。作者为这个数据大小问题提出了一个可能的解决方案:性能度量谓词。这些谓词允许用户定义在应用程序执行期间控制事件跟踪数据输出的性能参数。作者断言,性能度量谓词的使用为控制大型复杂系统的事件跟踪数据输出提供了一个强大而有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信