Similarity Measures for Location-Dependent MMIMO, 5G Base Stations On/Off Switching Using Radio Environment Map

Marcin Hoffmann, P. Kryszkiewicz
{"title":"Similarity Measures for Location-Dependent MMIMO, 5G Base Stations On/Off Switching Using Radio Environment Map","authors":"Marcin Hoffmann, P. Kryszkiewicz","doi":"10.1109/WoWMoM51794.2021.00053","DOIUrl":null,"url":null,"abstract":"The Massive Multiple-Input Multiple-Output (MMIMO) technique together with Heterogeneous Network (Het-Net) deployment enables high throughput of 5G and beyond networks. However, a high number of antennas and a high number of Base Stations (BSs) can result in significant power consumption. Previous studies have shown that the energy efficiency (EE) of such a network can be effectively increased by turning off some BSs depending on User Equipments (UEs) positions. Such mapping is obtained by using Reinforcement Learning. Its results are stored in a so-called Radio Environment Map (REM). However, in a real network, the number of UEs’ positions patterns would go to infinity. This paper aims to determine how to match the current set of UEs’ positions to the most similar pattern, i.e., providing the same optimal active BSs set, saved in REM. We compare several state-of-the-art distance metrics using a computer simulator: an accurate 3D-Ray-Tracing model of the radio channel and an advanced system-level simulator of MMIMO Het-Net. The results have shown that the so-called Sum of Minimums Distance provides the best matching between REM data and UEs’ positions, enabling up to 56% EE improvement over the scenario without EE optimization.","PeriodicalId":131571,"journal":{"name":"2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM51794.2021.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Massive Multiple-Input Multiple-Output (MMIMO) technique together with Heterogeneous Network (Het-Net) deployment enables high throughput of 5G and beyond networks. However, a high number of antennas and a high number of Base Stations (BSs) can result in significant power consumption. Previous studies have shown that the energy efficiency (EE) of such a network can be effectively increased by turning off some BSs depending on User Equipments (UEs) positions. Such mapping is obtained by using Reinforcement Learning. Its results are stored in a so-called Radio Environment Map (REM). However, in a real network, the number of UEs’ positions patterns would go to infinity. This paper aims to determine how to match the current set of UEs’ positions to the most similar pattern, i.e., providing the same optimal active BSs set, saved in REM. We compare several state-of-the-art distance metrics using a computer simulator: an accurate 3D-Ray-Tracing model of the radio channel and an advanced system-level simulator of MMIMO Het-Net. The results have shown that the so-called Sum of Minimums Distance provides the best matching between REM data and UEs’ positions, enabling up to 56% EE improvement over the scenario without EE optimization.
基于无线环境图的位置依赖mimo、5G基站开/关切换的相似性度量
大规模多输入多输出(MMIMO)技术与异构网络(Het-Net)部署相结合,可实现5G及以上网络的高吞吐量。然而,大量的天线和大量的基站(BSs)会导致大量的功耗。先前的研究表明,根据用户设备(User equipment)的位置,关闭一些BSs可以有效地提高这种网络的能源效率(EE)。这种映射是通过使用强化学习获得的。其结果存储在所谓的无线电环境图(REM)中。然而,在一个真实的网络中,ue的位置模式的数量将趋于无穷大。本文旨在确定如何将当前ue的位置集与最相似的模式相匹配,即提供相同的最优活动BSs集,保存在REM中。我们使用计算机模拟器比较了几种最先进的距离度量:无线电频道的精确3d光线追踪模型和先进的MMIMO Het-Net系统级模拟器。结果表明,所谓的最小距离总和提供了REM数据与ue位置之间的最佳匹配,与未进行EE优化的情况相比,可使EE提高56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信