RGB-D SLAM in dynamic environments with deep learning

W. Chen, Deji Li
{"title":"RGB-D SLAM in dynamic environments with deep learning","authors":"W. Chen, Deji Li","doi":"10.1117/12.2682598","DOIUrl":null,"url":null,"abstract":"Traditional visual Simultaneous Localization and Mapping (SLAM) is mostly based on the assumption of static environment, which is susceptible to receive dynamic targets in dynamic environment, leading to the degradation of localization accuracy. In this paper, we introduce the instance segmentation network SOLOv2, which combined with motion consistency detection can effectively eliminate the dynamic feature points in the environment and improve the visual SLAM accuracy with the depth map hole repair algorithm. Tested on the TUM dataset, the positional estimation accuracy in dynamic environments is significantly improved compared to ORB-SLAM2.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional visual Simultaneous Localization and Mapping (SLAM) is mostly based on the assumption of static environment, which is susceptible to receive dynamic targets in dynamic environment, leading to the degradation of localization accuracy. In this paper, we introduce the instance segmentation network SOLOv2, which combined with motion consistency detection can effectively eliminate the dynamic feature points in the environment and improve the visual SLAM accuracy with the depth map hole repair algorithm. Tested on the TUM dataset, the positional estimation accuracy in dynamic environments is significantly improved compared to ORB-SLAM2.
基于深度学习的动态环境RGB-D SLAM
传统的视觉同步定位与制图(SLAM)多基于静态环境假设,容易在动态环境中接收到动态目标,导致定位精度下降。本文引入实例分割网络SOLOv2,结合运动一致性检测,可以有效消除环境中的动态特征点,并通过深度图孔洞修复算法提高视觉SLAM精度。在TUM数据集上测试,动态环境下的位置估计精度比ORB-SLAM2有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信