Bottom-up Estimation of Geometric Layout for Indoor Images

Yuxiao Wang, Yaochen Li, Ming Zeng, Zikun Dong, Jian Yuan, Ziwei Wang
{"title":"Bottom-up Estimation of Geometric Layout for Indoor Images","authors":"Yuxiao Wang, Yaochen Li, Ming Zeng, Zikun Dong, Jian Yuan, Ziwei Wang","doi":"10.1109/ICUS48101.2019.8996010","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a bottom-up approach to estimate the geometric layout of indoor images using latent variables. By utilizing latent variables to model subregions, the estimation accuracy of scene layout is implicitly improved. The proposed method consists of three sub-tasks: feature extraction, subregion classification and geometric layout classification. Firstly, the location features are extracted to roughly estimate the basic indoor structure. The influence of illumination, rich color, and foreground occlusion can be eliminated. Secondly, N-slack SSVM is applied to efficiently classify the location features extracted in the previous step. Finally, the bag-of-words model is combined with cosine similarity and information divergence filtering to improve the fault tolerance of the geometric layout classification task. The classification accuracy can reach 0.982, which well demonstrate the effectiveness of the proposed approach.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8996010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a bottom-up approach to estimate the geometric layout of indoor images using latent variables. By utilizing latent variables to model subregions, the estimation accuracy of scene layout is implicitly improved. The proposed method consists of three sub-tasks: feature extraction, subregion classification and geometric layout classification. Firstly, the location features are extracted to roughly estimate the basic indoor structure. The influence of illumination, rich color, and foreground occlusion can be eliminated. Secondly, N-slack SSVM is applied to efficiently classify the location features extracted in the previous step. Finally, the bag-of-words model is combined with cosine similarity and information divergence filtering to improve the fault tolerance of the geometric layout classification task. The classification accuracy can reach 0.982, which well demonstrate the effectiveness of the proposed approach.
室内图像几何布局的自底向上估计
在本文中,我们提出了一种自下而上的方法来估计室内图像的几何布局使用潜变量。利用潜在变量对子区域进行建模,可以隐式提高场景布局的估计精度。该方法包括三个子任务:特征提取、子区域分类和几何布局分类。首先提取位置特征,粗略估计室内基本结构;可以消除光照、丰富色彩和前景遮挡的影响。其次,利用N-slack SSVM对前一步提取的位置特征进行有效分类。最后,将词袋模型与余弦相似度和信息发散滤波相结合,提高了几何布局分类任务的容错性。分类精度可达0.982,很好地证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信